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Problem
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• Given | 𝜴 | = 𝒎 < Τ𝒏(𝒏 − 𝟏) 𝟐 partial distances ,

𝒊, 𝒋 ∈ 𝛀, (set 𝛀 drawn uniformly w/o replacement) between (unknown) points 𝑷 = 𝒑𝟏, 𝒑𝟐, … 𝒑𝒏 ∈ ℝ𝒓×𝒏

• In a compact form, the distance matrix 

• For Gram matrix 𝑿 = 𝑷𝑻𝑷,  , 𝒊, 𝒋 ∈ 𝛀

The goal is to reconstruct P



Setup

• Measurement operator       : 

• Ground truth 𝑿𝟎 = 𝑷𝑻𝑷

• Standard Coherence factor :

• We solve the rank minimization problem defined by, 

Such that

[Tasissa and Lai ]

and

| 𝜴 | = 𝑚



Limitations of Existing work

• Lack of computationally efficient algorithms for Nuclear Norm Minimization(NNM)

• Lack of Restricted Isometry Property (RIP) for Euclidean distance geometry problems 

Our Contribution

• An algorithm based on Iteratively reweighted least squares framework (MatrixIRLS1).
It implicitly minimizes smoothed log-det objectives by minimizing a quadratic model

• Local Convergence at optimal sample complexity

• Dual Basis formulation and establishing Restricted Isometry Property (RIP)



Experiments

Protein reconstruction by 

MatrixIRLS with 0.5% and 0.6% 

samples respectively 

0.5%
0.6%

• MatrixIRLS shows reconstruction from fewer 

samples compared to other methods.

• MatrixIRLS is robust to ill-conditioned data 

• Time to convergence for MatrixIRLS is significantly 

less than the other methods.
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