# Sample-Efficient Geometry Reconstruction from Euclidean **Distances using Non-Convex Optimization**





### Ipsita Ghosh

University of North Carolina at Charlotte

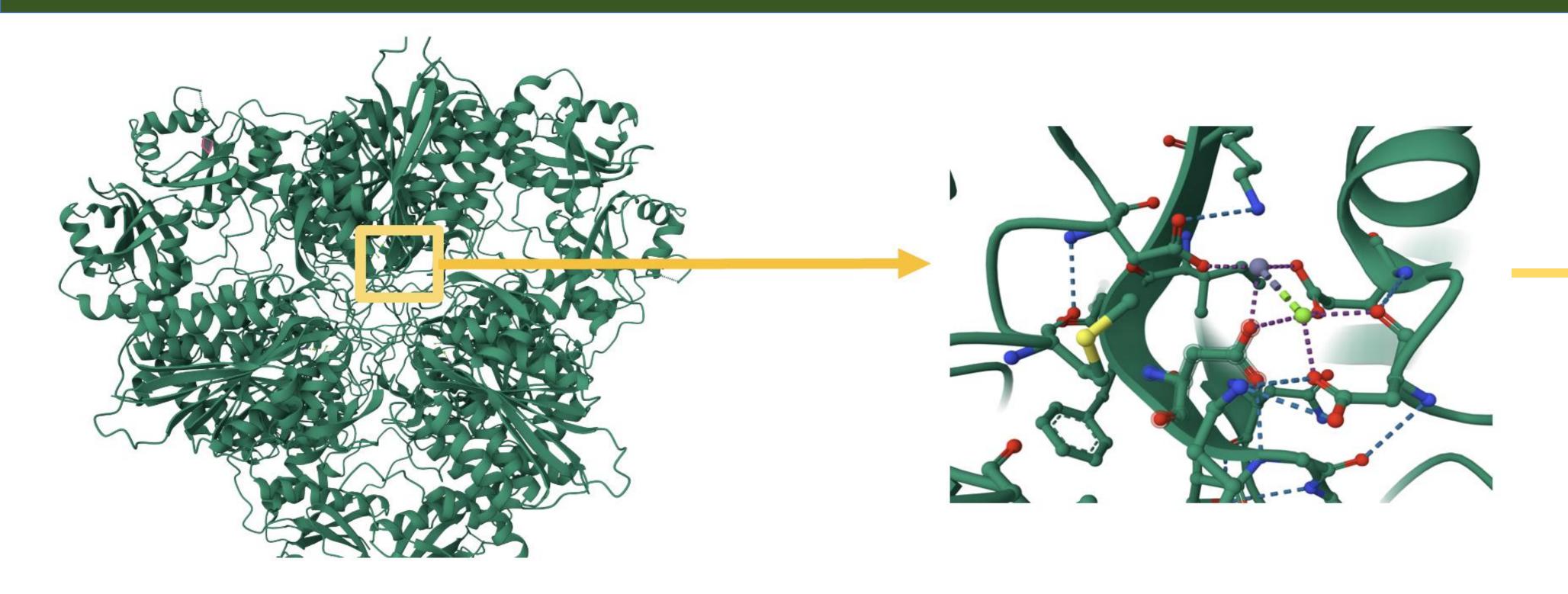
### Christian Kümmerle

University of North Carolina at Charlotte

### Abiy Tasissa

Tufts University





### Problem

• Given  $|\Omega| = m < n(n-1)/2$  partial distances  $\mathbf{d}_{ij}^2 = \|\mathbf{p}_i - \mathbf{p}_j\|^2 = \mathbf{p}_i^\top \mathbf{p}_i + \mathbf{p}_j^\top \mathbf{p}_j - 2\mathbf{p}_i^\top \mathbf{p}_j$ ,  $(i, j) \in \Omega$ , (set  $\Omega$  drawn uniformly w/o replacement) between (unknown) points  $P = [p_1, p_2, ..., p_n] \in \mathbb{R}^{r \times n}$ • In a compact form, the distance matrix  $D = 1 \operatorname{diag}(PP^T)^T + \operatorname{diag}(PP^T) 1^T - 2PP^T$ • For Gram matrix  $X = P^T P$ ,  $X_{i,i} + X_{j,j} - 2X_{i,j} = D_{i,j} \forall i, j, (i,j) \in \Omega$ 

### The goal is to <u>reconstruct</u> P

|                       | 0 | ? | ? | 4 |
|-----------------------|---|---|---|---|
|                       | ? | 0 | ? | ? |
|                       | ? | ? | 0 | 2 |
| $\mathbf{D}_{\Omega}$ | 4 | ? | 2 | 0 |

## • Measurement operator $\mathcal{A}$ :

$$\mathbf{w}_{\alpha} = \begin{cases} \mathbf{e}_{i} \mathbf{e}_{i}^{\top} + \mathbf{e}_{j} \mathbf{e}_{j}^{\top} - \mathbf{e}_{i} \mathbf{e}_{j}^{\top} - \mathbf{e}_{j} \mathbf{e}_{i}^{\top}, & \text{if } \alpha = (i, j) \in \mathbb{I}, \\ \frac{1}{2} (\mathbf{e}_{i} \mathbf{1}^{\top} + \mathbf{1} \mathbf{e}_{i}^{\top}), & \text{if } \alpha = (i, i) \text{ for some } i \in \{1, \dots, n\}, \end{cases}$$

- Ground truth  $X^0 = P^T P$
- Standard Coherence factor :  ${\cal V}$  [Tasissa and Lai ]
- We solve the rank minimization problem defined by,

### Setup

$$\mathcal{A}(\mathbf{X})_\ell = egin{cases} \langle \mathbf{w}_{lpha_\ell}, \mathbf{X} 
angle \ \langle \mathbf{w}_{(\ell-m,\ell-m)}, \mathbf{X} 
angle \end{cases}$$

# $\min_{\mathbf{X}\in S_n} \operatorname{rank}(\mathbf{X})$

Such that  $\mathbf{X} \succeq \mathbf{0}$  and  $\mathcal{A}(\mathbf{X}) = [\mathbf{D}_{\Omega}; \mathbf{0}]$ 

# for $\ell \leq m$

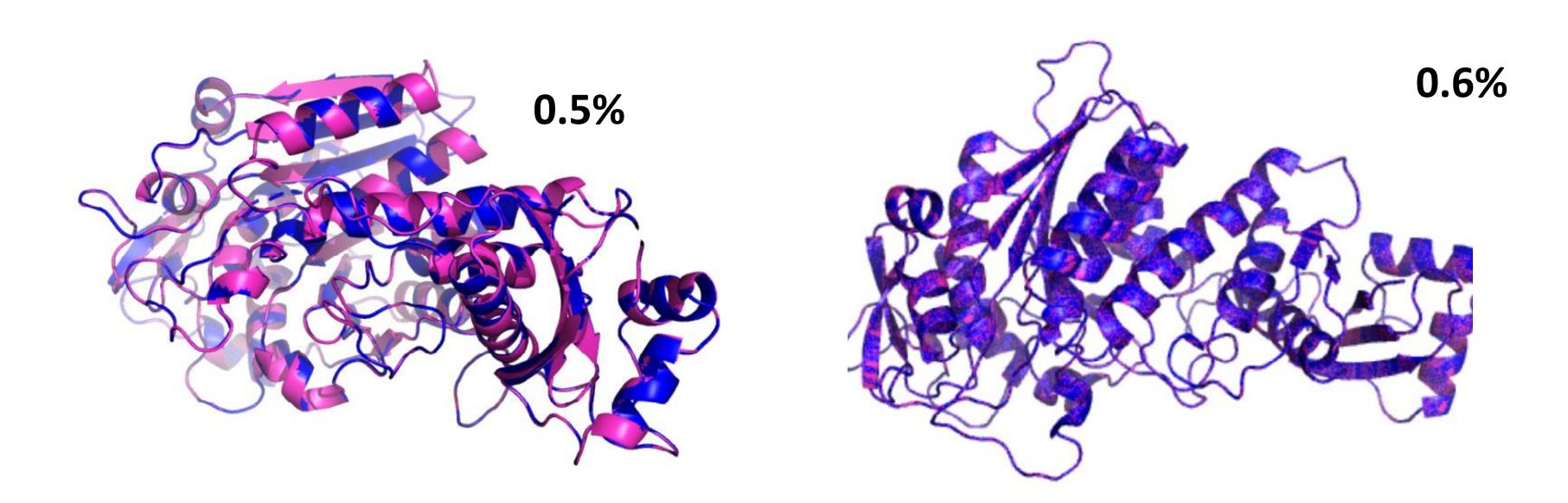
 $|\Omega| = m$ 

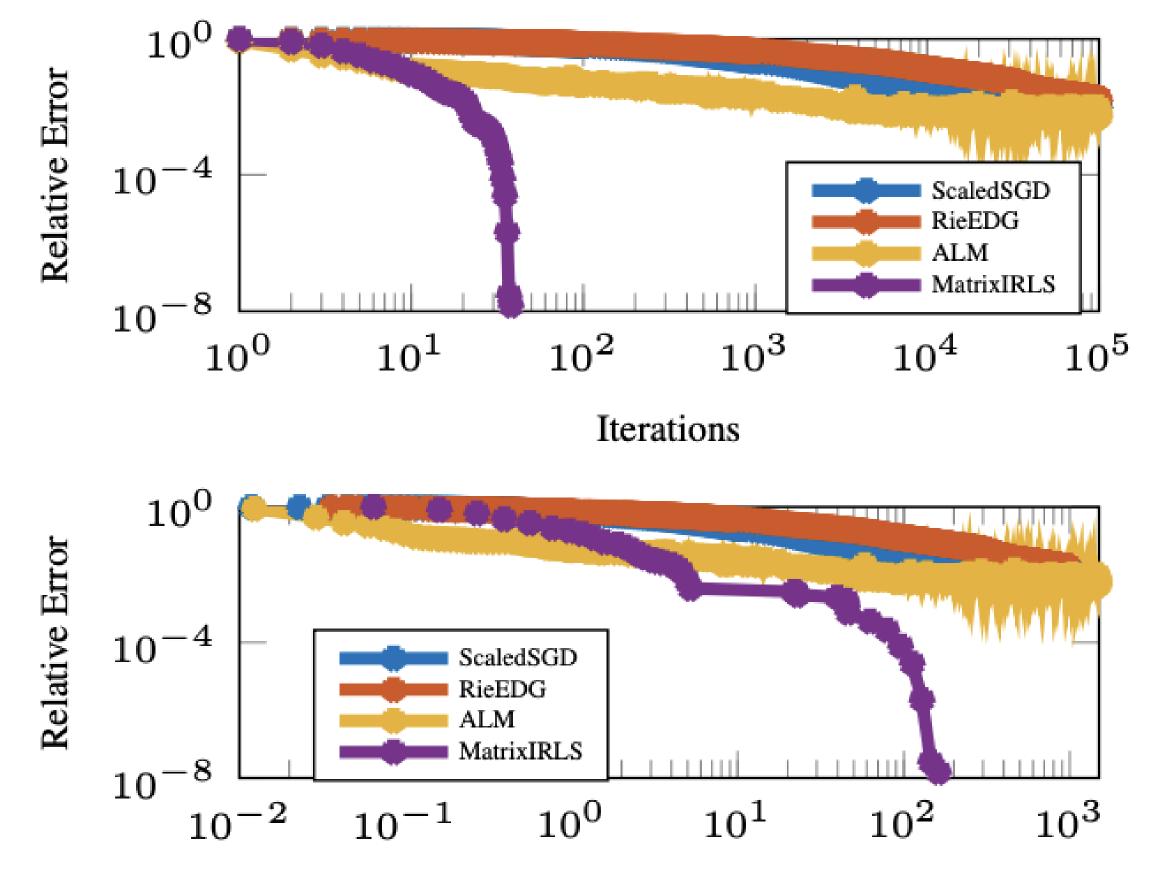
### for $\ell > m$

- Lack of computationally efficient algorithms for Nuclear Norm Minimization (NNM)
- Lack of Restricted Isometry Property (RIP) for Euclidean distance geometry problems

- An algorithm based on Iteratively reweighted least squares framework (MatrixIRLS<sup>1</sup>). It implicitly minimizes smoothed log-det objectives by minimizing a quadratic model
- Local Convergence at optimal sample complexity
- Dual Basis formulation and establishing Restricted Isometry Property (RIP)

### **Our Contribution**





Runtime in seconds

### Experiments



- less than the other methods.

**Protein reconstruction by** MatrixIRLS with 0.5% and 0.6% samples respectively

 MatrixIRLS shows reconstruction from fewer samples compared to other methods.

MatrixIRLS is robust to ill-conditioned data

• Time to convergence for MatrixIRLS is significantly

## **Reference:**

[1] C. Kümmerle, C. Mayrink Verdun. A Scalable Second Order Method for III-Conditioned Matrix Completion from Few Samples, ICML 2021.

[2] C. Smith, H. Cai, A. Tasissa. Riemannian Optimization for Non-convex Euclidean Distance Geometry with Global Recovery Guarantees

[3] I. Ghosh, A. Tasissa, C. Kümmerle. Sample-Efficient Geometry Reconstruction from Euclidean Distances using Non-Convex Optimization, NeurIPS, 2024.

[4] A. Tasissa and R. Lai, "Exact reconstruction of Euclidean distance geometry problem using low-rank matrix completion," IEEE Trans. Inf. Theory, vol. 65, no. 5, pp. 3124–3144, 2019.

[5]Y. Li, X. Sun, "Sensor Network Localization via Riemannian Conjugate Gradient and Rank Reduction: An Extended Version", IEEE Transactions on Signal Processing