

Ferrari: Federated Feature Unlearning via Optimizing Feature Sensitivity

Hanlin Gu^{2*} <u>Win Kent Ong^{1*}</u> Chee Seng Chan¹ Lixin Fan² ¹Center of Image and Signal Processing, Universiti Malaya ²WeBank AI Lab, Shenzhen, China

Introduction – Federated Learning

Machine Learning algorithm enables multiple parties to collaboratively train a model

- Without sharing private data, only sharing trained weights
- Better data privacy protection, reducing the risk of privacy leakage

Introduction – Machine Unlearning

• Remove the influence of a subset of its training dataset from the trained neural network.

Introduction – Machine Unlearning

- PRIVACY REGULATION LAWS
 - California Consumer Privacy Act (CCPA)
 - General Data Protection Regulation (GDPR)
 - Consumer Privacy Protection Act (CPPA)
 - Secure the right to be forgotten

- REMOVE OUTDATED OR MISLABELLED TRAINING DATA
 - Improve model robustness

Motivation

- **1**. Federated Unlearning
 - Current works focus on isolated data points
 - Client, sample or class level unlearning
- 2. Centralized Feature Unlearning
 - Impractical for Federated Learning due to participation of all client (all datasets).
- 3. Difficulty in evaluating the effectiveness of feature unlearning.
 - Conventional method compared to the retrained model without the target feature reduced model utility.

Contributions

- I. We define the Feature Sensitivity metric based on Lipschitz Continuity
- II. We proposed an effective **federated feature unlearning** framework
 - allowing clients to selectively unlearn specific features
 - without the participation of other clients
 - optimizing feature sensitivity locally
- III. We provide theoretical proof and extensive experimental results demonstrate the state-of-the-art utility and effectiveness of our proposed framework.

```
Revisit - Lipschitz Continuity
```

Lipschitz continuity quantifies the sensitivity of a function, by quantifying how function values change with respect to variations in the independent variable

Exist a non-negative Lipschitz constant

Bounded Rate of Change - Average rate of change of the function bounded by Lipschitz bound.

$$-L_{f_{\theta}} \le \frac{||f_{\theta}(x_1) - f_{\theta}(x_2)||_Y}{||x_1 - x_2||_X} \le L_{f_{\theta}}$$

Feature Sensitivity: $s = \frac{\|f(x) - f(\bar{x})\|}{\|(x) - (\bar{x})\|}$

$$s = \frac{\|f(x) - f(x + \delta)\|}{\|(x) - (x + \delta)\|}$$

$$s = \frac{\|f(x) - f(x + \delta)\|}{\|\delta\|}$$

$$\bar{x} = x + \delta =$$

x =

Intuition Sensitivity-Guided Optimization

Core Idea: Optimize Feature Sensitivity via Guided Lipschitz Bound

$$\mathcal{L} = \frac{\|f(x) - f(x + \delta)\|}{\|\delta\|}, (x, y) \in D_u$$

Feature Sensitivity as guided loss function to optimize the unlearn model θ^u via gradient descent

$$\theta^{u} \leftarrow \theta^{u} - \eta \cdot \nabla_{\theta^{u}}(\mathcal{L})$$
$$\nabla_{\theta^{u}}(\mathcal{L}) = \frac{\partial \mathcal{L}}{\partial \theta_{u}}$$

Theoretical Proof – Utility Loss

- $\ell_1 = \min_{\|\delta_{\mathcal{F}}\| \ge C} \mathbb{E}_{(x,y) \in \mathcal{D}} \min_{\theta} \ell \big(f_{\theta}(x + \delta_{\mathcal{F}}), y \big)$
- $\ell_2 = \max_{\|\delta_{\mathcal{F}}\| \leq C} \mathbb{E}_{(x,y) \in \mathcal{D}} \min_{\theta} \ell \big(f_{\theta}(x + \delta_{\mathcal{F}}), y \big)$
- **Assumption 1.** Assume $\ell_2 \leq \ell_1$

larger perturbations would naturally lead to greater utility loss

Assumption 2. Suppose the federated model achieves zero training loss.

Theorem 1. If Assumption 1 and Assumption 2 hold, the utility loss of unlearned model

obtained by Algorithm 1 is less than the utility loss with unlearning successfully, i.e.

(3.10)

where $\ell_u = \mathbb{E}_{(x,y)\in\mathcal{D}}\ell(f_{\theta^u}(x), y)$

Experimental Setup -Models and Datasets

TABULAR DATASET

- Fully-Connected Linear Neural Network
- Adult Census Income (Adult) Dataset includes 48, 842 records with 14 attributes to predict if a person earns over \$50K a year based on the census attributes and marital status as the sensitive feature that aim to unlearn.
- •Diabetes Dataset: includes 768 personal health to predict if a person has diabetes and number of pregnancies as the sensitive feature that aim to unlearn.

IMAGE DATASET

•ResNet-18 (Convolutional Neural Networks)

FMNIST

MNIST

CMNIST

CIFAR-10

CIFAR-20

CIFAR-100

CelebA

Experimental Setup - Baselines

- Baseline Original model before unlearning
- Retrain Model training without the presence of unlearn feature
- Fine-tune Fine-tuning baseline model with the retain dataset.
- FedCDP A Federated Unlearning framework that achieves class unlearning by utilizing Term Frequency Inverse Document Frequency (TF-IDF) guided channel pruning, which selectively removes the most discriminative channels related to the target category and followed by fine-tuning without retraining from scratch.
- FedRecovery A Federated Unlearning framework that achieves client unlearning by removing the influence of a client's data from the global model using a differentially private machine unlearning algorithm that leverages historical gradient submissions without the need for retraining

Effectiveness - Sensitive Feature Unlearning

Model Inversion Attack – Attack Success Rate

Scenario	Datasets	Unlearn	Attack Success Rate(ASR) (%)							
		Feature	Baseline	Retrain	Fine-tune	FedCDP	FedRecovery	Ours		
Sensitive	CelebA	Mouth	84.36 ±3.22	47.52 ± 1.04	77.43 ± 10.98	75.36 ±9.31	71.52 ±6.07	51.28 ±2.41		
	Adult	Marriage	87.54 ± 13.89	49.28 ± 2.13	83.45 ± 8.44	72.83 ± 5.18	80.39 ± 10.68	49.58 ± 1.38		
	Diabetes	Pregnancies	92.31 ± 7.55	38.89 ± 2.52	88.46 ± 5.01	81.91 ± 8.17	78.27 ± 2.47	$\textbf{42.61} \pm \textbf{1.81}$		

Feature Sensitivity

Scenario	Datasets	Unlearn	Feature Sensitivity								
	Datasets	Feature	Baseline	Retrain	Fine-tune	FedCDP	FedRecovery	Ours			
Sensitive	CelebA	Mouth	$0.96 \pm 1.41 \times 10^{-2}$	$0.07 \pm 8.06 \times 10^{-4}$	$0.79 \pm 2.05 \times 10^{-2}$	$0.93 \pm 2.87 \times 10^{-2}$	$0.91 \pm 3.41 \times 10^{-2}$	0.09 ± 3.04 ×10 ⁻⁴			
	Adult	Marriage	$1.31 \pm 1.53 \times 10^{-2}$	$0.02 \pm 6.47 \times 10^{-4}$	$0.94 \pm 6.81 \times 10^{-2}$	$1.07 \pm 7.43 \times 10^{-2}$	$1.14 \pm 2.57 \times 10^{-2}$	0.05 ± 1.72 ×10 ⁻⁴			
	Diabetes	Pregnancies	$1.52 \pm 0.91 \times 10^{-2}$	$0.05 \pm 5.07 \times 10^{-4}$	$0.96 \pm 1.28 \times 10^{-2}$	$1.23 \pm 3.82 \times 10^{-2}$	$0.83 \pm 5.08 \times 10^{-2}$	0.07 ± 1.07 ×10 ⁻⁴			

Effectiveness - Sensitive Feature Unlearning

Model Inversion Attack – Reconstructed Images

Target

Retrain

"Mouth" feature remain unreconstructed

Effectiveness - Backdoor & Biased Feature Unlearning

Scenarios	Datasats	Unlearn Feature		Accuracy (%)						
Scenarios	Datasets			Baseline	Retrain	Fine-tune	FedCDP[65]	FedRecovery[61]	Ferrari(Ours)	
Backdoor	MNIST	Backdoor pixel- pattern	\mathscr{D}_r	95.65 ±1.39	97.19 ±2.49	96.16 ±0.37	65.82 ± 6.85	40.81 ±4.31	95.93 ±0.45	
			\mathscr{D}_u	97.43 ± 3.69	$0.00\pm\!0.00$	72.64 ± 0.24	69.37 ± 0.83	53.72 ± 3.14	0.11 ± 0.01	
	FMNIST		\mathcal{D}_r	91.07 ± 0.54	93.85 ± 1.08	94.36 ±1.98	68.46 ± 3.39	42.93 ± 2.50	92.83 ±0.61	
			\mathscr{D}_u	94.51 ± 6.29	$0.00\pm\!0.00$	43.91 ± 0.28	72.19 ± 0.49	48.15 ± 4.37	0.90 ± 0.03	
	CIFAR-10		\mathscr{D}_r	87.63 ± 1.16	91.12 ± 1.60	92.02 ±3.15	54.91 ±6.91	27.49 ± 4.96	89.91 ±0.95	
			\mathscr{D}_u	95.05 ± 2.30	$0.00\pm\!0.00$	88.44 ± 0.92	62.75 ± 5.07	49.26 ± 2.23	$\textbf{0.29} \pm \textbf{0.04}$	
	CIFAR-20		\mathcal{D}_r	75.06 ± 6.41	81.91 ± 4.68	82.67 ±1.32	55.67 ± 6.35	23.76 ± 2.17	78.29 ± 3.12	
			\mathcal{D}_u	94.21 ± 4.11	$0.00\pm\!0.00$	86.53 ±1.47	50.17 ± 9.11	50.38 ± 4.25	$\textbf{0.78} \pm \textbf{0.08}$	
	CIFAR-100		\mathcal{D}_r	54.14 ± 3.96	73.54 ± 5.70	73.66 ±6.57	34.62 ± 2.24	15.62 ± 7.78	69.57 ±3.81	
			\mathscr{D}_u	88.98 ± 6.63	$0.00\pm\!0.00$	65.38 ± 4.76	57.29 ± 3.62	46.17 ± 9.25	$\textbf{0.15} \pm \textbf{0.01}$	
	ImageNet		\mathcal{D}_r	52.35 ± 2.25	67.05 ± 1.29	67.34 ±2.73	29.74 ± 4.72	13.46 ± 6.53	65.74 ± 1.32	
			\mathcal{D}_u	83.16 ± 3.74	0.00 ± 0.00	71.48 ± 3.69	62.39 ± 3.05	54.92 ± 5.59	$\textbf{0.09} \pm \textbf{0.02}$	
Biased	CMNIST	Color	\mathcal{D}_r	64.94 ± 7.88	98.76 ± 3.65	67.15 ± 2.60	25.85 ± 1.58	23.92 ± 1.08	84.31 ±2.63	
			\mathscr{D}_u	98.88 ± 4.90	98.44 ± 1.90	97.95 ±1.13	30.17 ± 4.69	27.64 ± 9.37	84.62 ± 3.59	
	CelebA	Mouth	\mathcal{D}_r	79.46 ± 2.09	96.47 ±6.15	84.45 ± 1.48	14.29 ± 0.81	16.34 ± 3.43	94.18 ±3.08	
			\mathscr{D}_u	96.38 ± 3.87	96.11 ±2.17	94.23 ±0.66	21.58 ± 3.48	25.72 ± 8.02	$\textbf{94.79} \pm \textbf{1.48}$	

Effectiveness - Backdoor & Biased Feature Unlearning

Biased Feature

Utility

Saamaniaa	Datasets	Unlearn	Accuracy(%)						
Scenarios	Datasets	Feature	Baseline	Retrain	Fine-tune	FedCDP[65]	FedRecovery[61]	Ferrari (Ours)	
Sensitive	CelebA	Mouth	94.87 ± 1.38	79.46 ± 2.32	62.79 ± 1.62	34.03 ± 4.20	29.78 ±6.69	92.26 ±1.73	
	Adult	Marriage Pregnancies	82.45 ± 2.59	65.27 ± 0.58	61.02 ± 1.05	30.19 ± 1.62	27.89 ± 3.71	81.02 ± 0.58	
	Diabetes		82.11 ± 0.49	64.19 ± 0.72	59.57 ± 0.68	36.71 ±4.56	17.56 ± 2.32	79.53 ±0.79	
	IMDB	Names	91.39 ± 1.57	83.27 ± 2.05	72.15 ± 1.92	48.36 ± 2.79	37.93 ± 2.84	$\textbf{89.15} \pm \textbf{1.32}$	
Backdoor	MNIST		94.75 ± 4.88	96.23 ±0.16	96.85 ±0.91	65.31 ±4.39	40.52 ± 7.38	95.83 ±1.14	
	FMNIST	Backdoor	90.68 ± 2.19	92.98 ± 0.75	93.52 ± 1.63	67.62 ± 0.81	42.24 ± 4.45	92.61 ±1.57	
	CIFAR-10	Pixel Pattern	87.55 ± 3.71	90.92 ± 1.83	91.23 ± 0.44	53.98 ± 2.17	27.16 ± 9.68	89.52 ± 2.18	
	CIFAR-20		74.47 ± 2.38	81.61 ± 1.75	82.52 ± 0.69	54.76 ± 0.98	23.02 ± 3.11	78.34 ± 2.35	
	CIFAR-100		54.13 ± 7.62	73.12 ± 1.54	73.59 ±1.66	34.30 ± 0.42	15.21 ± 5.83	69.30 ± 2.27	
	ImageNet		52.86 ± 4.14	67.18 ± 2.07	67.52 ±1.69	31.17 ± 3.96	12.75 ± 5.27	65.36 ± 1.84	
Biased	CMNIST	Color	81.72 ± 3.41	98.49 ± 1.46	82.54 ± 0.78	27.56 ± 1.71	25.05 ± 5.09	83.85 ±1.63	
	CelebA	Mouth	87.35 ± 4.07	95.87 ± 1.52	88.93 ± 2.65	16.98 ± 0.23	20.19 ± 7.21	94.62 ± 2.49	

Time Efficiency

Conclusion

- To best of our knowledge, this is the first work to achieve feature unlearning within Federated Learning settings.
- •The proposed Federated Feature Unlearning framework effectively achieves feature unlearning via the proposed Sensitivity-Guided Optimization algorithm.
- Theoretical analysis and experimental results, both quantitative and qualitatively.
- Practical Federated Feature Unlearning Framework without participation of all clients, only participation of unlearn client is needed.

Thank you for listening!

Paper

Code

Email