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Background: Conventional Deep Learning

[1] Deep Learning on Private Data.
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Human Intelligence and Test-Time Adaptation (TTA)

Inference with continuous learning
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The TTA Figure is borrowed from Uncovering Adversarial Risks of Test-Time Adaptation.

• TTA (online) learns from testing data

• TTA updates model via self-/un-supervised objectives before prediction



Practical Use Case

Multiple devices across multiple constantly changing scenarios 



Limitations of Existing TTA

Main limitations when applying TTA to multi-device system:

:
1. Under continuously changing distributions, they tend to forget what it has learned in long-term scenarios.

2. Adaptation is conducted on each device independently, useful knowledge from other devices is ignored.

3. Rely on backpropagation for model updates, which is infeasible on resource-limited devices.



Technical Challenges to Resolve

Goal: enable cross-device and cross-scenario collaborative adaptation

so that “one device adapts, all devices benefit.”

Key Challenges:

1. How to adapt continuously without forgetting learned knowledge from previously encountered domains?

2. How to facilitate knowledge sharing among devices in a data-free manner for privacy preservation?

3. How to exploit various shared domain knowledge in a backpropagation-based and forward-only manner?

Main Insights:

1. Resource-abundant devices: learn, accumulate, share, and utilize knowledge based on back-propagation.

2. Resource-limited devices: adaptively aggregate the shared knowledge in a forward-only manner.



Methods Overview

◼ Methods

1. Domain shift detector: detects domain changes with 𝐷 𝜙𝑑, ƶ𝜙𝑡 > 𝑧 to save/share learned vectors in T without forgetting

2. Knowledge reprogramming TTA: exploits shared knowledge and learn new knowledge by 𝜽𝑙 = 𝜽𝑙
𝑜 + σ𝑖=0

𝑁 𝛼𝑖Δ𝜽𝑖 + Δ𝜽

3. Training-free TTA: aggregates shared knowledge 𝜽𝑙 = 𝜽𝑙
𝑜 + σ𝑖=0

𝑁 𝛾𝑖Δ𝜽𝑖 based on domain similarities with forward only

Decoupled Optimization

𝜶 for knowledge reprogramming

Δ𝜽 for new knowledge learning

Training-Free Adaptation

𝜸 for knowledge reprogramming

Determine 𝜸 via domain similarities



Experiments

◼ Main Arguments

➢ We learn without forgetting.

➢ Collaboration is helpful on BP devices.

➢ Collaboration is helpful on FP devices.

➢ Our method is computation/memory efficient.

◼ Main Experiments

➢ Lifelong Adaptation to verify accumulation.

➢ TTA vs. Collaborative TTA on BP devices.

➢ TTA vs. Collaborative TTA on FP devices.

➢ Extra computation/memory of our method.

◼ Datasets
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No Degradation!
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Experiments

◼ Other Discussions

➢ Effectiveness of CoLA on single-domain TTA

➢ Robustness of CoLA against potential harmful knowledge.

➢ Scalability of CoLA with more collaborative devices.

➢ Efficiency of CoLA with increasing domain vectors.

➢ Prompt tuning with CoLA using multiple hard prompts. 

➢ Advantages of CoLA over FedAvg in collaborative TTA.

➢ Robustness of CoLA under small batch sizes.

➢ Effectiveness of CoLA in mitigating error accumulation.

➢ …

Thank you! 
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