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Shortage of radiologists
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[Source: American College of Radiology]

[Source: Radiological Society of North America]

[Kalidindi and Gandhi, ’23]



LLM for radiology report generation
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X-ray scan

[Figure credit: MIMIC IV]
Trusted for medical 
decision-making?

LLM generated report



How to safely use LLM?
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Prompts Outputs

Decision-making
?

LLM



How to safely use LLM?
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Prompts Outputs

Decision-making
?LLM

What guarantees are reasonable?

How to achieve the guarantees?



How to safely use LLM?
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Prompts Outputs

LLM

Conformal Alignment

Decision-making 
with guarantees

✓Assess the alignment status
✓Identify “aligned” outputs for deployment 
✓Leave the uncertain ones to experts 



Evaluation of alignment

‣ Prompt  
- X-ray scans, questions …

‣ Foundation model  
- Language model, vision model …

‣ Expert input 
- Radiology report generated by doctors, correct answer to the question …

‣ Alignment function 

X ∈ 𝒳

f : 𝒳 ↦ 𝒴

E ∈ ℰ

𝒜 : 𝒴 × ℰ ↦ ℝ
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: X-ray scanX

: expert-generated reportE: LLM-generated reportf(X)

A = 𝒜( f(X), E)

Chexbert [Smit et al. 04]



Problem formulation

‣ Training set:  

‣ Test set:   

‣ Wish to identify test units with       testing 

‣ Goal: find a subset  such that 

{(Xi, Ei)}n
i=1

{Xn+j}m
j=1

An+j > c ⟺ Hj : An+j ≤ c

𝒮 ⊂ {1,…, m}
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FDR = 𝔼
∑j∈[m] 1{j ∈ 𝒮, An+j ≤ c}

|S |
≤ α

“The expected fraction of selected units that are not aligned”

Aligned units



Predicting alignment scores

‣ Recall: want to select  with 

‣ But  is not accessible since no access to 

‣ Use predicted alignment score  for decision-making

‣ Need to account for the uncertainty of prediction to ensure FDR control

j An+j > c

An+j En+j

̂An+j
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Conformal alignment

‣ Divide the training data into two folds  and 

‣ Model fitting: on , fit a prediction model  that uses  to predict 

‣ Calibration: on , compute the predicted alignment score  

‣ Conformal p-values: for each , compute the conformal p-value

D1 D2

D1 g X A

D2
̂Ai = g(Xi)

j ∈ [m]
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Instantiation of Conformal Selection [Jin and Candès ’23]

pj =
1 + ∑i∈D2

1{Ai ≤ c, ̂Ai ≥ ̂An+j}

1 + |D2 |



Conformal alignment
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pj =
1 + ∑i∈D2

1{Ai < c, ̂Ai ≥ ̂An+j}

1 + |D2 |
Conformal p-value

Super-uniform under the null: , for any ℙ(An+j ≤ c, pj ≤ t) ≤ t t ∈ (0,1)

Selection via the Benjamini-Hochberg (BH) procedure
 [Benjamini and Hochberg ’95]

‣ Rank test samples by p-values

‣ Determine a “data-dependent” threshold of p-values

So
rte

d 
p-

va
lu

es

Index

FDR 

Data-dependent threshold by BH



Theoretical guarantees
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Theorem (Gui, Jin and R., 2024)
For i.i.d. data, conformal alignment at nominal level  yields α ∈ (0,1)

FDR = 𝔼[
∑m

j=1 1{j ∈ 𝒮, An+j ≤ c}

|𝒮 | ] ≤ α

‣ Also applies to exchangeable data

✔  Arbitrary prediction model 

✔  Arbitrary data distribution

✔  Random 

✔  Dependent data points

c



Desiderata for choosing g

‣ Evaluating the efficiency of the method
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Power = 𝔼[
∑j∈[m] 1{j ∈ 𝒮, An+j > c}

∑j∈[m] 1{j : An+j > c} ]

Theorem (K., Jin and Ren, 2024)
Define  and . Under mild conditions, H(t) = ℙ(A ≤ c, g(X) ≥ t) t(α) = sup{t : t/ℙ(H(g(X)) ≤ t) ≤ α}

lim
n,m→∞

Power = ℙ(H(g(X)) ≤ t(α) ∣ A > c)

lim
n,m→∞

1
m ∑

j∈[m]

1{j ∈ 𝒮, An+j > c} = ℙ(H(g(X)) ≤ t(α), A > c)



Desiderata for choosing g
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Theorem (K., Jin and Ren, 2024)
Define  and . Under mild conditions, H(t) = ℙ(A ≤ c, g(X) ≥ t) t(α) = sup{t : t/ℙ(H(g(X)) ≤ t) ≤ α}

lim
n,m→∞

Power = ℙ(H(g(X)) ≤ t(α) ∣ A > c)

lim
n,m→∞

1
m ∑

j∈[m]

1{j ∈ 𝒮, An+j > c} = ℙ(H(g(X)) ≤ t(α), A > c)

density

g(X)

A > cA ≤ c

cutoff on  
for selection

̂A

The number of selections depends on 

‣ The quality of the foundation model  (blue area) 

‣ The quality of the prediction model  (separation)
f

g

Optimal g(x) ∝ ℙ(A > c ∣ X = x)
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Example: radiology report generation



Generate report for X-ray scans

‣ Data: MIMIC-CXR [Johnson et al. '19]

‣ Prompt : X-ray scan

‣ Foundation model : fine-tuned ViT (base-patch16-224-in21k) + GPT2

‣ Reference : radiology report generated by human experts

‣ Alignment function : CheXbert [Smit et al. 04]

- convert  and  to two 14-dimensional vectors of binary labels

-  if at least 12 coordinates match 

-

X

f

E

𝒜
f(X) E

A = 1
c = 0
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Predicting alignment scores
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Predictors

‣ Input uncertainty scores (similarity between multiple outputs)
[Kuhn et al. ’23; Lin et al. ’23]

‣ Output confidence scores (functions of multiple outputs)
[Lin et al. ’23]

Prediction (classification) model

‣ Logistic regression
‣ Random forest
‣ XGBoost

Informative & lightweight



Results
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‣  fraction of data for feature engineering

‣  fraction of data for prediction model fitting 

γ1 = 0.2

γ2 = 0.5

Logistic regression



Effect of prediction models
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Random forest

XGboost



Effect of data partition
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Example: Q&A system

More details in our paper



Conclusion

‣ We present Conformal Alignment that selectively deploys foundation model outputs with 
alignment guarantees

‣ The framework is instantiated in the context of question answering and radiology report 
generation

‣ Future work
- When data arrives sequentially, can we update the model?
- More efficient way of utilizing the referenced data

23



Thank you!
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https://arxiv.org/pdf/2405.10301

Gui, Y., Jin, Y., and Ren, Z. (2024). “Conformal alignment: Knowing when to trust foundation models
with guarantees.” Advances in Neural Information Processing Systems.
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