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Background
Ø Tool-augmented Large Language Models (LLMs) leverage external tools, 

often in the form of APIs, to improve their reasoning capabilities on real-
time knowledge and complex tasks. 
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Ø Advanced closed-source LLMs have demonstrated good tool usage capabilities

Ø Early tool learning research on open-source LLMs has certain limitations

ü Tools are limited or not real-world accessible
ü Focus on scenarios where only one tool is used for one reasoning task
ü Simple reasoning and planning mechanism limits the tool-use potential of LLMs
ü Some studies do not use real responses from API execution for training
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Motivation

1. Li et al., API-Bank: A Comprehensive Benchmark for Tool-Augmented LLMs, 2023.



Ø Key Reference Work —— ToolBench1

l Collect 3,451 real-world tools from RapidAPI
Hub, which contain 16,464 APIs

l Generate 126,486 pairs of (instruction, expert 
annotated path) samples by using ChatGPT to 
create instructions that may call one or several 
APIs and annotate reasoning trajectories with 
real API calls

l Fine-tune LLaMA to create ToolLLaMA
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1. Qin et al., Toolllm: Facilitating large language models to master 16000+ real-world apis, 2023.
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Reasoning Mechanism：Depth-First 
Search-based Decision Tree (DFSDT)

Ø Key Reference Work —— ToolBench1

Motivation

1. Qin et al., Toolllm: Facilitating large language models to master 16000+ real-world apis, 2023.



l ToolLLaMA’s performance still has room for improvement

l ToolBench provides large-scale tree-like expert trajectories, 
but only the successful paths (positive samples) are used 
as training data during supervised fine-tuning

l Low data utilization
l Insufficient exploration of the target space may lead 

to suboptimal strategies and limited generalization 
performance

l Lack of fine-grained process supervision
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Ø Key Reference Work —— ToolBench1
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Reasoning Mechanism：Depth-First 
Search-based Decision Tree (DFSDT)



Ø Dataset Construction——ToolPreference for multi-step reasoning with tools based on ToolBench
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Our Method

l If we use a path-wise way to construct preference
samples following previous researches:

Ø Theoretically, this may cause the model to focus more on the 
final correct or incorrect responses to specific instructions, 
leading to poor generalization.

Ø From an engineering perspective, learning preference for 
the entire path conflicts with the model’s iterative reasoning 
mechanism, making it unsuitable for implementing.
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Our Method

Ø Theoretically, this may cause the model to focus more on the 
final correct or incorrect responses to specific instructions, 
leading to poor generalization.

Ø From an engineering perspective, learning preference for 
the entire path conflicts with the model’s iterative reasoning 
mechanism, making it unsuitable for implementing.

Iterative Reasoning Mechanism: the model decides the 
next API call based on the response of last API execution, 
rather than pre-planning all API calls at the start.



l Use a step-wise way to construct preference samples:
backtrack along successful paths to parse branch nodes

Ø Instruction: description of the DFSDT reasoning 
rules and available APIs documentation

Ø Input: user query and historical inference 
information before the current step

Ø Output: a pair of preferred and unpreferred steps
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Ø Dataset Construction——ToolPreference for multi-step reasoning with tools based on ToolBench

Our Method

l Construct 69,393 pairs of preference samples, each
formalized as {Instruction, Input, Output}:



Ø Aligning LLMs with experts’ tool-usage preferences —— Direct Preference Optimization (DPO)

1. Supervised Fine-Tuning (SFT) is performed on the pre-trained LLM using only positive samples

2. Direct Preference Optimization (DPO) is performed with ToolPreference to obtain our TP-LLaMA
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l Evaluation Metrics
ü Pass Rate: represents the proportion that the model successfully gives answers within a 

certain number of reasoning actions (set to 200 in our experiment) 
ü Win Rate: measures the likelihood that the solution path provided by the test model is 

preferred over the reference solution path for the same instruction 

l Test Setting

G1: single-tool
G2: intra-category multi-tools 
G3: inter-category multi-tools 

Instruction: unseen instructions for seen tools in training
Tool: unseen tools that belong to seen categories in training 
Category: unseen tools that belong to unseen categories

ü Evaluate on six test scenarios with different task complexity and generalization difficulty
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Our Method



Ø Using LLaMA-2-7B as the Base Model for Training – About Reasoning Performance
ü In terms of pass rate, TP-LLaMA significantly outperforms the baselines, improving by more than 

12% on average compared to models without preference learning
ü In terms of win rate, TP-LLaMA also shows quite good performance, only slightly lower than 

ToolLLaMA in the G1-Category scenario 
ü TP-LLaMA performs well in more challenging task scenarios. The pass rate increased by more than 

26% in the G3-Instruction scenario, proving that preference learning significantly enhances the 
model's ability to handle complex multi-tool tasks.
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Experiment Results



ü LLaMA with SFT requires an average of 32.06 reasoning steps, while TP-LLaMA needs only 
22.62 steps, improving efficiency by 29.44%

ü TP-LLaMA's reasoning efficiency is significantly better than the model trained only with 
successful trajectories -- through preference learning, the model is more likely to make the best 
decision first at each step of reasoning, thus avoiding exploring unnecessary suboptimal 
branches in the decision tree.
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Experiment Results
Ø Using LLaMA-2-7B as the Base Model for Training – About Reasoning Efficiency



Ø Ablation Experiment: Using Mistral-7B、Qwen1.5-7B、Gemma-7B as Base Models

Preference learning improves the 
performance of all the models.

The effectiveness of our framework is 
independent of the model itself!
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Experiment Results
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