

DiffHammer[{] **Rethinking the Robustness of Diffusion-Based Adversarial Purification**

Kaibo Wang¹, Xiaowen Fu¹, Yuxuan Han¹, Yang Xiang^{1,2}

1. Department of Mathematics, The Hong Kong University of Science and Technology

2. HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute

Adversarial attack in DNNs

Adversarial samples hinder the application of DNNs in the security-critical domain

Diffusion-based purification

Purification Classifier

Diffusion-based purification demonstrated impressive robustness

Diffusion: Iterative Complex Stochastic Time-consuming Gradient dilemma Resubmit risk $grad =$ 1 $\frac{1}{N} \left(\frac{grad_1 + \dots + grad_N}{\frac{1}{N}} \right) \rightarrow x_{adv} \rightarrow \sqrt{\frac{1}{N}}$

EOT Attack with 1-evaluation

Inherent robustness or insufficient evaluation?

Wish list in DiffHammer

DiffHammer: Adaptive attack for diffusion based purification

Selective attack

Attacks toward S_0 are unhelpful and even detrimental

Attack on vulnerable set

Target S_1 : **Largest** set of purifications attacked by a **same** r^* .

Coupled optimization problem

- o Identify z_i (whether ϕ_i in S_1) based on r
- \circ Optimize r for purification with $z_i = 1$

We adopt the EM algorithm as the optimizer

purification ϕ

adversarial noise r

E-Step: Set
$$
q(z_i) = p(z = 1 | \mathcal{A}, r)
$$
 given r

o Linear optimization Attack as many purifications as possible N $r^* = r + \Delta r = r + \left|\arg\max\sum \sigma(\mathcal{L}_{\phi_i}(x+r) + \Delta r^T \nabla_x \mathcal{L}_{\phi_i}\right|_{x+r})$ $i = 1$ Linear approximated loss \circ Loss-to-probability mapping σ

$$
q(z_i) = \sigma(\mathcal{L}_{\phi_i}(x+r) + (r^* - r)^T \nabla_x \mathcal{L}_{\phi_i}\big|_{x+r})
$$

E-Step: probability of purification attacked by optimized r^*

M-Step: optimize r given $q(z_i)$

o Weighted gradient aggregation Time-consuming

$$
\circ \quad \text{Plug-in for off-the-shelf attack algorithms}
$$

$$
r^{(t+1)} = \Pi_{\|r\|_{\infty} \le \epsilon} [r^{(t)} + \alpha \text{sign}(\nabla_r \mathcal{L})]
$$

M-Step: aggregate gradients of purification from S_1

Gradient grafting

Aggregate early and graft on representative sample to backpropagate

DiffHammer: Rethinking the Robustness of Diffusion-Based Adversarial Purification

Gradient grafting

Gradient grafting significantly improves attack efficiency

Resubmit risk

Estimation of p is important for M resubmit risk: $(1 - p)^M$ $\sqrt{\sqrt{x}}$ (p=0.2)

1-Evaluation only suitable for $p = 0.1$

Statistically, 1-evaluation underestimates p and resubmit risk

-Evaluation: √√√**×**√√**×**√ √√

- 1. More accurate estimate in $t-1$: $p^{(t-1)} \approx 0.2$
- 2. Byproducts for attack stage t :

for $t \leftarrow 1$ to T do Evaluation for $t-1$ iteration and input for t iteration; Sample ϕ_i , $i = 1, \cdots, N$; $Rob^{(t-1)} =$ Eval $(r^{(t-1)}, M)$ // for evaluation; **Record** $\mathcal{L}_{\phi_i}^{(t)}, \nabla_{\phi_i}^{(t)} \mathcal{L}_{\phi_i}$ // for attack; E-step: identify the set with shared vulnerability; $\Delta \tilde{r}^{(t)} = \arg \max \sum_{i} \sigma(\mathcal{L}_{\phi_i}^{(t)} + \Delta \tilde{r}^T \nabla_{\phi_i}^{(t)} \mathcal{L}_{\phi_i}) ;$ $q_i^{(t)} = \sigma(\mathcal{L}_{\phi_i}^{(t)} + \Delta \tilde{r}^T \nabla_{\phi_i}^{(t)} \mathcal{L}_{\phi_i})$ // probability of affiliation; M-step: estimate the full gradients' aggregation; $\tilde{g}^{(t)} = \sum_i q_i^{(t)} \nabla_{\phi_i}^{(t)} \mathcal{L}_{\phi_i} / N$ // aggregation in ϕ stage; $g^{(t)}$ = Backward $(\hat{\phi}(x+r^{(t-1)})^T \tilde{g}^{(t)})$ // gradient grafting; $r^{(t)} =$ AttackAlgorithm $(r^{(t-1)}, g^{(t)})$;

Better risk assessment is almost free

Effectiveness and efficiency

DiffHammer (DH) achieves effective results within 10-30 iterations

Defenses show robustness below 30% with 10-evaluation

Generalization in S_1 is beneficial (DiffHammer) while in S_0 is harmful

- ◆ We propose a selective attack strategy that targets vulnerable purifications, enhancing evaluation efficiency through gradient grafting.
- We incorporate N-evaluation within the loop to quantify the resubmit risk of achieving at least one successful attack in practice.

Rethinking the Robustness of Diffusion-Based Adversarial Purification

Kaibo Wang, Xiaowen Fu, Yuxuan Han, Yang Xiang

