

DiffHammer Rethinking the Robustness of Diffusion-Based Adversarial Purification

Kaibo Wang¹, Xiaowen Fu¹, Yuxuan Han¹, Yang Xiang^{1,2}

1. Department of Mathematics, The Hong Kong University of Science and Technology

2. HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute

Adversarial attack in DNNs

<u>Adversarial samples</u> hinder the application of DNNs in the security-critical domain

Diffusion-based purification

Classifier

Diffusion-based purification demonstrated impressive robustness

Diffusion: Iterative Complex Stochastic $grad = \frac{1}{N} (grad_1 + \dots + grad_N) \rightarrow x_{adv} \rightarrow \checkmark \checkmark \checkmark$ Time-consuming Gradient dilemma Resubmit risk *EOT Attack with 1-evaluation*

Inherent robustness or insufficient evaluation?

DiffHammer: Rethinking the Robustness of Diffusion-Based Adversarial Purification

Wish list in DiffHammer 🔨

DiffHammer: Adaptive attack for diffusion based purification

Selective attack

Attacks toward S_0 are <u>unhelpful</u> and even <u>detrimental</u>

Attack on vulnerable set

Target S_1 : Largest set of purifications attacked by a <u>same</u> r^{\star} .

Coupled optimization problem

- Identify z_i (whether ϕ_i in S_1) based on r Ο
- Optimize r for purification with $z_i = 1$ Ο

We adopt the <u>EM algorithm</u> as the optimizer

purification ϕ

adversarial noise r

E-Step: Set
$$q(z_i) = p(z = 1 | A, r)$$
 given r

• Linear optimization $r^{\star} = r + \Delta r = r + \arg \max \sum_{i=1}^{N} \sigma(\mathcal{L}_{\phi_i}(x+r) + \Delta r^T \nabla_x \mathcal{L}_{\phi_i}|_{x+r})$ • Loss-to-probability mapping σ

$$q(z_i) = \sigma(\mathcal{L}_{\phi_i}(x+r) + (r^* - r)^T \nabla_x \mathcal{L}_{\phi_i}\big|_{x+r})$$

E-Step: probability of purification attacked by optimized r^{\star}

M-Step: optimize r given $q(z_i)$

• Weighted gradient aggregation Time-consuming $\nabla_r \mathcal{L} = \frac{1}{N} \sum_{i=1}^N q(z_i) \nabla_x \mathcal{L}_{\phi_i}$

• Plug-in for off-the-shelf attack algorithms

$$r^{(t+1)} = \Pi_{\|r\|_{\infty} \le \epsilon} [r^{(t)} + \alpha \operatorname{sign}(\nabla_{r} \mathcal{L})]$$

M-Step: aggregate gradients of purification from \mathcal{S}_1

Gradient grafting

Aggregate early and graft on representative sample to backpropagate

DiffHammer: Rethinking the Robustness of Diffusion-Based Adversarial Purification

Gradient grafting

Gradient grafting significantly improves attack <u>efficiency</u>

Resubmit risk

Estimation of p is important for M resubmit risk: $(1 - p)^M$ $\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark (p=0.2)$

1-Evaluation only suitable for p = 0,1

Statistically, 1-evaluation underestimates p and resubmit risk

- 1. More accurate estimate in t-1: $p^{(t-1)} \approx 0.2$
- 2. Byproducts for attack stage *t*:

Better risk assessment is almost free

Effectiveness and efficiency

	Defense DiffPure		GDMP		LM		
	Metrics	Avg.Rob (it.)↓	Wor.Rob (it.) \downarrow	Avg.Rob (it.)↓	Wor.Rob (it.) \downarrow	Avg.Rob (it.)↓	Wor.Rob (it.) \downarrow
$\ell_\infty:8/255$	Clean	90.98	76.56	93.26	83.79	87.77	74.61
	BPD DA/	erations tak	en to reach	90% best p	erformance	5.27 (N/A) 2.56 (N/A)	27.54 (N/A) 17.97 (N/A)
	PGD	52.73 (31.05 (112)	49.41 (N/A)	36.91 (N/A)	17.99 (31)	9.38 (31)
	DH	42.54 (20)	22.66 (17)	41.64 (17)	27.54 (13)	16.15 (17)	8.01 (14)
	DMI^\dagger	45.64 (41)	25.20 (35)	43.40 (31)	32.42 (27)	38.81 (N/A)	23.83 (N/A)
	TMI^\dagger	45.04 (39)	25.20 (38)	45.43 (37)	34.77 (30)	41.13 (N/A)	25.59 (N/A)
	VMI^\dagger	50.55 (N/A)	28.71 (44)	50.76 (N/A)	37.11 (44)	21.97 (39)	11.72 (32)
	$SVRE^{\dagger}$	59.12 (N/A)	32.81 (N/A)	60.37 (N/A)	42.77 (N/A)	36.11 (N/A)	19.53 (136)

DiffHammer (DH) achieves effective results within 10-30 iterations

	Defense	DiffPure		GDMP		LM	
	Metrics	Avg.Rob (it.)↓	Wor.Rob (it.)↓	Avg.Rob (it.)↓	Wor.Rob (it.)↓	Avg.Rob (it.)↓	Wor.Rob (it.)↓
	Clean	90.98	76.56	93.26	83.79	87.77	74.61
$\ell_\infty:8/255$	BPDA	70.74 (N/A)	36.72 (N/A)	80.57 (N/A)	51.95 (N/A)	55.27 (N/A)	27.54 (N/A)
	DA/AA	57.60 (N/A)	33.79 (N/A)	52.83 (N/A)	37.70 (N/A)	32.56 (N/A)	17.97 (N/A)
	PGD	52.73 (N/A)	31.05 (112)	49.41 (N/A)	36.91 (N/A)	17.99 (31)	9.38 (31)
	DH	42.54 (20)	22.66 (17)	41.64 (17)	27.54 (13)	16.15 (17)	8.01 (14)
	DMI^\dagger	45.64 (41)	25.20 (35)	43.40 (31)	32.42 (27)	38.81 (N/A)	23.83 (N/A)
	TMI^\dagger	45.04 (39)	25.20 (38)	45.43 (37)	34.77 (30)	41.13 (N/A)	25.59 (N/A)
	\mathbf{VMI}^{\dagger}	50.55 (N/A)	28.71 (44)	50.76 (N/A)	37.11 (44)	21.97 (39)	11.72 (32)
	SVRE [†]	59.12 (N/A)	32.81 (N/A)	60.37 (N/A)	42.77 (N/A)	36.11 (N/A)	19.53 (136)

Defenses show robustness below 30% with 10-evaluation

	Defense	DiffPure		GDMP		LM	
	Metrics	Avg.Rob (it.)↓	Wor.Rob (it.)↓	Avg.Rob (it.)↓	Wor.Rob (it.)↓	Avg.Rob (it.)↓	Wor.Rob (it.) \downarrow
	Clean	90.98	76.56	93.26	83.79	87.77	74.61
	BPDA	70.74 (N/A)	36.72 (N/A)	80.57 (N/A)	51.95 (N/A)	55.27 (N/A)	27.54 (N/A)
-	Transfer	-based attac	ks that gen	eralize to al	Inurificatio	32.56 (N/A)	17.97 (N/A)
19		52.73 (A)				(31)	9.38 (31)
6/2	DH	42.54 (20)	22.66 (17)	41.64 (17)	27.54 (13)	16.15 (17)	8.01 (14)
•	DMI	45.64 (41)	25.20 (35)	43.40 (31)	32.42 (27)	38.81 (N/A)	23.83 (N/A)
0	⁸ TMI [†]	45.04 (39)	25.20 (38)	45.43 (37)	34.77 (30)	41.13 (N/A)	25.59 (N/A)
	\mathbf{VMI}^{\dagger}	50.55 (N/A)	28.71 (44)	50.76 (N/A)	37.11 (44)	21.97 (39)	11.72 (32)
	$SVRE^{\dagger}$	59.12 (N/A)	32.81 (N/A)	60.37 (N/A)	42.77 (N/A)	36.11 (N/A)	19.53 (136)

Generalization in S_1 is beneficial (DiffHammer) while in S_0 is harmful

- We propose a selective attack strategy that targets vulnerable purifications, enhancing evaluation efficiency through gradient grafting.
- We incorporate N-evaluation within the loop to quantify the resubmit risk of achieving at least one successful attack in practice.

Rethinking the Robustness of Diffusion-Based Adversarial Purification

Kaibo Wang, Xiaowen Fu, Yuxuan Han, Yang Xiang

