

Learning the Expected Core of Strictly Convex Stochastic Cooperative game

Nam Phuong Tran¹, The-Anh Ta², Shuqing Shi³, Debmalya Mandal¹, Yali Du³, Long Tran-Thanh¹

University of Warwick¹, Data 61 Australia², King's College London³

Reward Allocation Problem

Formulation:

- $N = \{1, ..., n\}$ set of players.
- Reward function $\mu : 2^N \rightarrow [0, 1]$
- Reward allocation: $x \in \mathbb{R}^{n}_{+}$,

Stable Allocation: Incentivise players to stay in *N*.

• $x(S) \ge \mu(S), \forall S \subseteq N$

Core: Set of all stable allocations.

Motivation

Credit assignment in CTDE

Research Questions

Classic Deterministic Setting:

• Compute core: require perfect knowledge of reward function μ .

Stochastic setting:

- The reward follows some unknown distributions.
- Learn the stable allocation through interacting with the environment.
- **Question**: How many samples (interactions) needed to output a *"stable" allocation,* with high probability.

Expected Core of Stochastic Game

Definition of Stochastic Game

- $G = (N, \mathbb{P}), \mathbb{P} = \{\mathbb{P}_S \text{ is a distribution on } [0,1], S \subset N\}.$
- Expected reward: $\mu(S) = \mathbb{E}_{r \sim \mathbb{P}_{S}}[r]$.
- \mathbb{P} is unknown to the players. Need to learn through data.
- Expected Core (E-Core): Set of all stable allocation in expectation
 - $x(S) \ge \mu(S), \forall S \subseteq N$

Interaction Protocol

There is a principal: game proceed in rounds.

Round *t*:

- Principal queries a coalition $S_t \subset N$
- Environment return $r_t \sim \mathbb{P}_{S_t}$.

Question : Are there some classes of the game where principal can learn expected stable allocation with probability at least $(1 - \delta)$ by $poly(n, log(\delta^{-1}))$.

Impossibility result of learning Expected Core

In general games: may not be possible (for any finite samples).

Theorem 1: Suppose the E-Core is not full-dimensional, then with finite samples, no algorithm can output a expected stable allocation with probability at least 0.8.

ς -Strictly convex game (in expectation):

• Expected reward function is strictly supermodular:

 $\mu(S \cup \{i\}) - \mu(S) \ge \mu(C \cup \{i\}) - \mu(C) + \varsigma, \quad \forall C \subset S$

Strict convexity guarantees that the core is full-dimensional, (n - 1).

Sample Complexity

Theorem 2: For ς -strictly convex game, with probability at least, after

 $T \cong n^{15} \varsigma^{-4} \log(\delta^{-1}),$

the algorithm stops and returns a stable allocation.

Separation Hyperplane for multiple convex set

Sufficient Stopping Condition: Using Separation hyperplanes

Theorem 3(Separation Hyperplane for multiple convex set): Assume that $\{\mathscr{C}_p\}_{p\in[n]}$ is are mutually disjoint compact and convex subsets in (n-1)-Euclidean space. Suppose that there does not exist a (n-2)-dimensional hyperplane that intersects with the interior of confidence sets. Then for each $p \in [n]$, there exist a hyperplane separating \mathscr{C}_p from $\bigcup_{q\neq p} \mathscr{C}_q$.

Conclusion

- We propose an algorithm that can learn a stable allocation with polynomial number of *n* for a class of strictly convex game.
- Analysis involves proving new result from convex geometry, e.g., *extension of hyperplane separation theorem*.