

Learning the Expected Core of Strictly Convex Stochastic Cooperative game

Nam Phuong Tran¹, The-Anh Ta², Shuqing Shi³, Debmalya Mandal¹, Yali Du³, Long Tran-Thanh¹

University of Warwick1, Data 61 Australia2, King's College London3

Reward Allocation Problem

Formulation:

- $N = \{1,...,n\}$ set of players.
- Reward function $\mu: 2^N \to [0, 1]$
- Reward allocation: $x \in \mathbb{R}^n_+$,

Stable Allocation: Incentivise players to stay in N.

• $x(S) \ge \mu(S)$, $\forall S \subseteq N$

Core: *Set of all stable allocations*.

Motivation

Research Questions

Classic Deterministic Setting:

• Compute core: require perfect knowledge of reward function μ .

Stochastic setting:

- The reward follows some unknown distributions.
- Learn the stable allocation through interacting with the environment.
- **Question**: How many samples (interactions) needed to output a *"stable" allocation*, with high probability.

Expected Core of Stochastic Game

Definition of Stochastic Game

- $G = (N, \mathbb{P})$, $\mathbb{P} = {\mathbb{P}_S}$ is a distribution on $[0,1]$, $S \subset N$.
- Expected reward: $\mu(S) = \mathbb{E}_{r \sim \mathbb{P}_S}[r]$.
- $\bullet\;\;$ $\mathbb P$ is unknown to the players. Need to learn through data.
- **Expected Core (E-Core)**: Set of all stable allocation in expectation
	- $x(S) \ge \mu(S)$, $\forall S \subseteq N$

Interaction Protocol

There is a principal: game proceed in rounds.

Round : *t*

- Principal queries a coalition $S_t \subset N$
- Environment return $r_t \sim \mathbb{P}_{S_t}$.

Question : Are there some classes of the game where principal can learn expected stable allocation with probability at least $(1 - \delta)$ by . poly(*n*, log(*δ*−¹))

Impossibility result of learning Expected Core

In general games: may not be possible (**for any finite samples**).

Theorem 1: Suppose the E-Core is not full-dimensional, then with finite samples, no algorithm can output a expected stable allocation with probability at least 0.8.

Strictly convex game (in expectation): *ς*−

• Expected reward function is strictly supermodular:

 $\mu(S \cup \{i\}) - \mu(S) \geq \mu(C \cup \{i\}) - \mu(C) + \varsigma$, $\forall C \subset S$

Strict convexity guarantees that the core is full-dimensional, $(n - 1)$.

Sample Complexity

Theorem 2: For *ς*-strictly convex game, with probability at least, after

 $T \approx n^{15} \zeta^{-4} \log(\delta^{-1}),$

the algorithm stops and returns a stable allocation.

Separation Hyperplane for multiple convex set

Sufficient Stopping Condition: Using Separation hyperplanes

Theorem 3(Separation Hyperplane for multiple convex set): Assume that $\{\mathscr{C}_p\}_{p\in [n]}$ is are mutually disjoint compact and convex subsets in (n-1)-Euclidean space. Suppose that there does not exist a (n-2)-dimensional hyperplane that intersects with the interior of confidence sets. Then for each $p \in [n]$, there exist a hyperplane separating \mathscr{C}_n from $\Box \mathscr{C}_n$. p $\mathbf{11}$ $\mathbf{0}\mathbf{11}$ $\mathbf{0}\mathbf{q}$ *q*≠*p*

Conclusion

- We propose an algorithm that can learn a stable allocation with polynomial number of n for a class of strictly convex game.
- Analysis involves proving new result from convex geometry, e.g., *extension of hyperplane separation theorem.*