Wasserstein convergence of Čech persistence diagrams for samplings of submanifolds

Charles Arnal, David Cohen-Steiner, Vincent Divol

November 12, 2024

ション ふゆ アメリア メリア しょうくしゃ

Topological data analysis studies the shape of data, i.e. its geometric or topological structure.

The Čech persistence diagrams $dgm_i(S)$ of a set S capture some aspects of its topology.

Persistence diagrams can be vectorized and used as inputs to various machine learning methods for classification or regression.

Common task in TDA: recover information regarding the shape of some set S using a finite sampling A \subset S.

Idea: use the persistence diagrams $dgm_i(A)$ as estimates of $dgm_i(S)$.

Problem: $\operatorname{dgm}_i(A)$ is only known to converge weakly to $\operatorname{dgm}_i(S)$ as $A \to S$. In particular, machine learning-friendly features might not converge.

In our article, we show that if

- S is a generic submanifold, and
- $A_n \subset S$ is a random finite sampling of cardinality n,

then $\operatorname{dgm}_i(A_n) \xrightarrow{n \to \infty} \operatorname{dgm}_i(S)$ for the stronger Wasserstein metric.

This guarantees the stability of many machine learning features.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つのぐ

More specifically, we show:

- A stronger version of the bottleneck theorem,
- Finiteness in expectation of the number of points in some regions of the diagram,
- Asymptotic expression for the total persistence of $dgm_i(A_n)$,
- Convergence of $\operatorname{dgm}_i(A_n)$ to $\operatorname{dgm}_i(S)$ for the Wasserstein distances.

3

(1) マン・ション (1) マン・ション