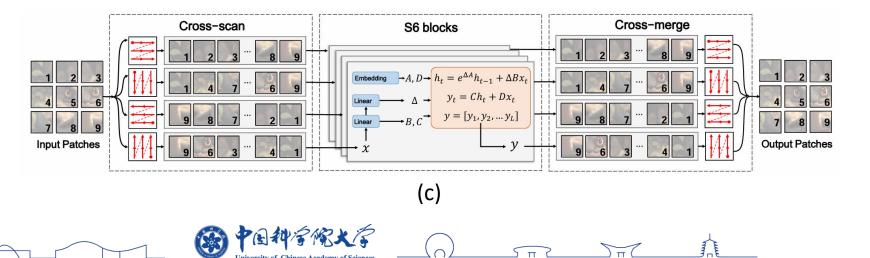
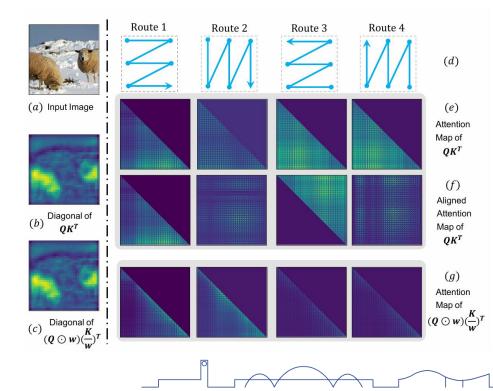
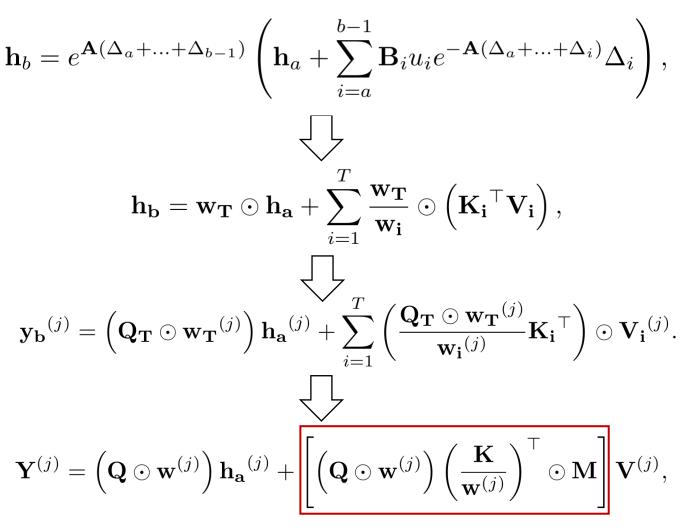
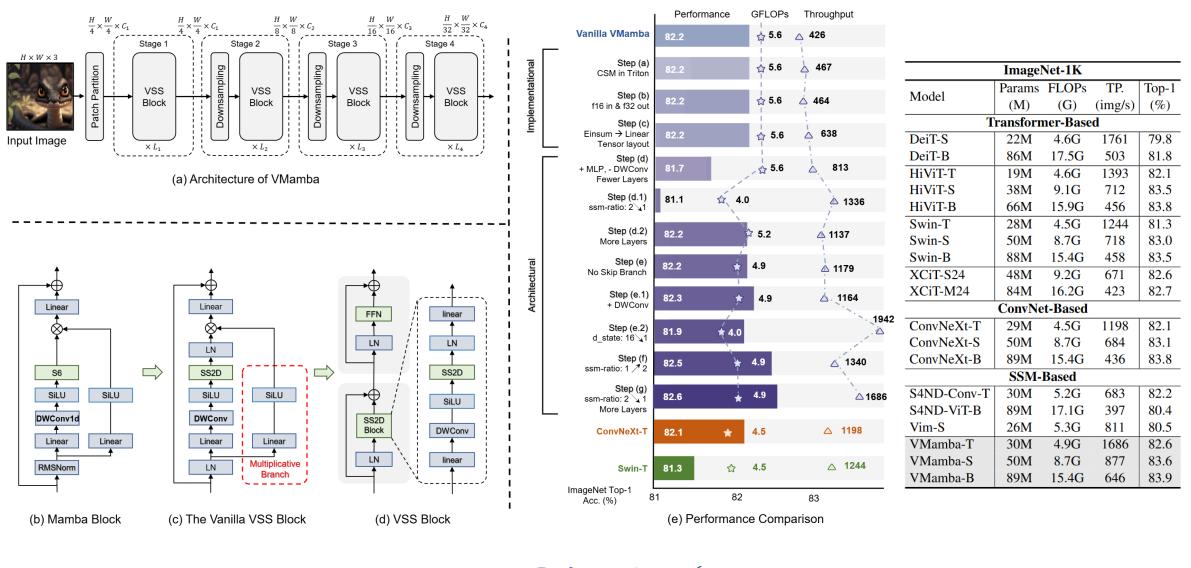

VMamba: Visual State Space Model

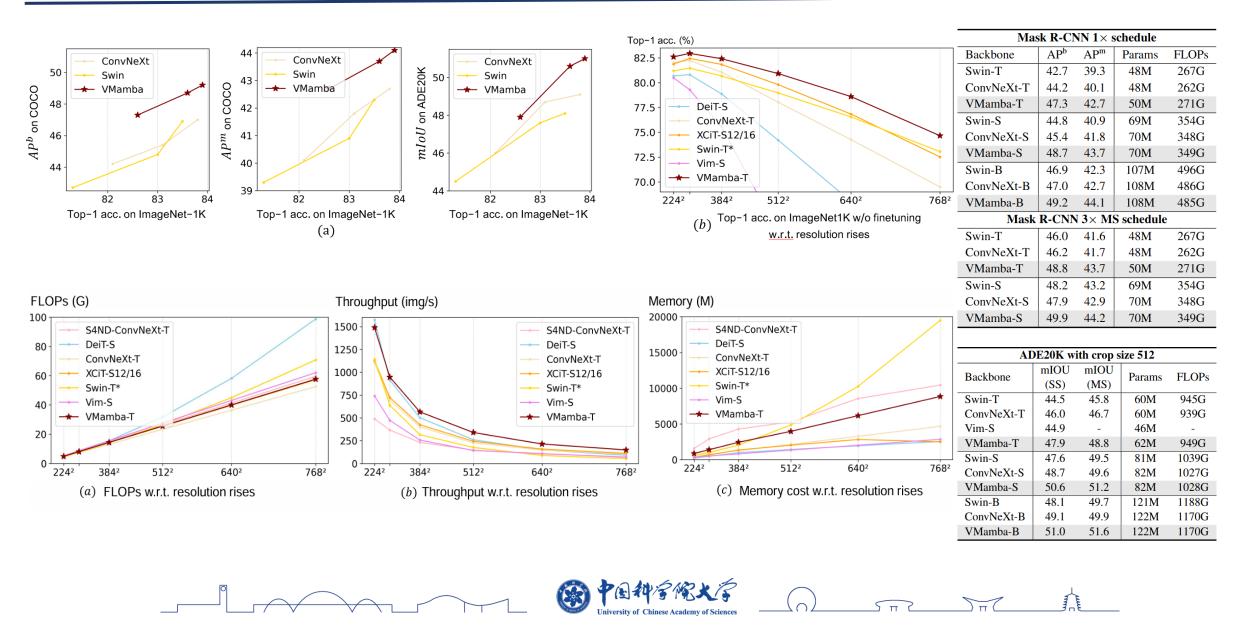

Yue Liu¹ Yunjie Tian¹ Yuzhong Zhao¹ Hongtian Yu¹ Lingxi Xie² Yaowei Wang³ Qixiang Ye¹ Jianbin Jiao¹ Yunfan Liu^{1‡} ¹ UCAS ² Huawei Inc. ³ Pengcheng Lab. {liuyue171,tianyunjie19,zhaoyuzhong20,yuhongtian17}@mails.ucas.ac.cn 198808xc@gmail.com, wangyw@pcl.ac.cn, {qxye,jiaojb,liuyunfan}@ucas.ac.cn


In contrast to the self-attention mechanism, SS2D ensures that each image patch acquires contextual knowledge exclusively through a compressed hidden state computed along its corresponding scanning path.

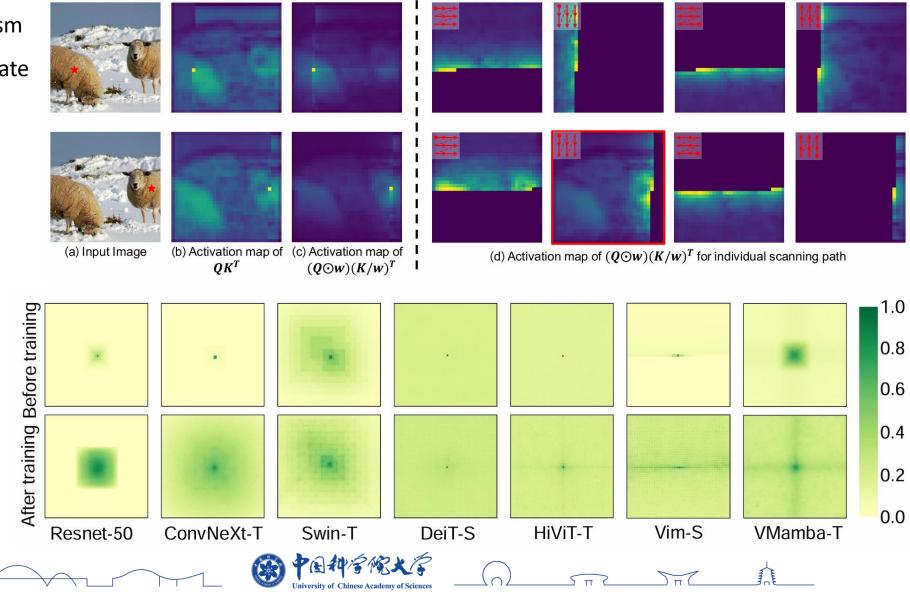


Preliminaries

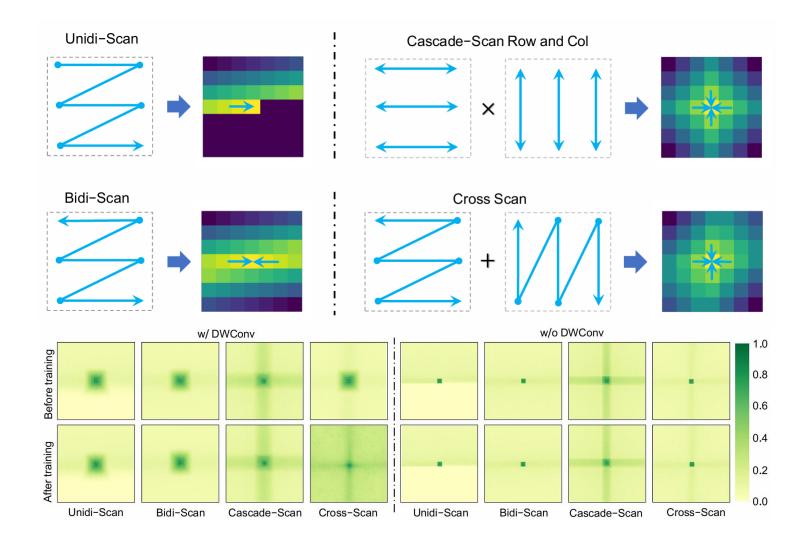

$$\begin{aligned} \mathbf{V} &\coloneqq [\mathbf{V}_{1}; \dots; \mathbf{V}_{T}] \in \mathbb{R}^{T \times D_{v}}, \text{ where } \mathbf{V}_{i} \coloneqq \mathbf{u}_{\mathbf{a}+\mathbf{i}-1} \odot \boldsymbol{\Delta}_{\mathbf{a}+\mathbf{i}-1} \in \mathbb{R}^{1 \times D_{v}} \\ \mathbf{K} &\coloneqq [\mathbf{K}_{1}; \dots; \mathbf{K}_{T}] \in \mathbb{R}^{T \times D_{k}}, \text{ where } \mathbf{K}_{i} \coloneqq \mathbf{B}_{\mathbf{a}+\mathbf{i}-1} \in \mathbb{R}^{1 \times D_{k}} \\ \mathbf{Q} &\coloneqq [\mathbf{Q}_{1}; \dots; \mathbf{Q}_{T}] \in \mathbb{R}^{T \times D_{k}}, \text{ where } \mathbf{Q}_{i} \coloneqq \mathbf{C}_{\mathbf{a}+\mathbf{i}-1} \in \mathbb{R}^{1 \times D_{k}} \\ \mathbf{w} &\coloneqq [\mathbf{w}_{1}; \dots; \mathbf{w}_{T}] \in \mathbb{R}^{T \times D_{k} \times D_{v}}, \text{ where } \mathbf{w}_{i} \coloneqq \prod_{j=1}^{i} e^{\mathbf{A}\boldsymbol{\Delta}_{a-1+j}^{\mathsf{T}}} \in \mathbb{R}^{D_{k} \times D_{v}} \\ \mathbf{H} &\coloneqq [\mathbf{h}_{\mathbf{a}+1}; \dots; \mathbf{h}_{\mathbf{b}}] \in \mathbb{R}^{T \times D_{k} \times D_{v}}, \text{ where } \mathbf{h}_{i} \in \mathbb{R}^{D_{k} \times D_{v}} \\ \mathbf{Y} &\coloneqq [\mathbf{y}_{\mathbf{a}+1}; \dots; \mathbf{y}_{\mathbf{b}}] \in \mathbb{R}^{T \times D_{v}}, \text{ where } \mathbf{y}_{i} \in \mathbb{R}^{D_{v}} \end{aligned}$$

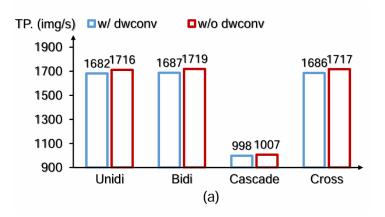

中国科学院大学

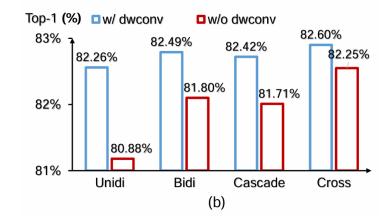
Architecture and Performance


· 中国种学院大学

Down-steam Tasks




The selective scan mechanism allows VMamba to accumulate history along the scanning path, facilitating the establishment of long-term dependencies across


image patches.

Different Scan patterns

With the second second

VMamba is robust across different initialization, activation, and learning rate.

initialization	Params	FLOPs	TP.	Train TP.	Top-1
	(M)	(G)	(img/s)	(img/s)	acc. (%)
mamba	30.2	4.91	1686	571	82.60
rand	30.2	4.91	1682	570	82.58
zero	30.2	4.91	1683	570	82.67

The performance of VMamba-T with different activation functions

activation		FLOPs		Train TP.	1
	(M)	(G)	(img/s)	(img/s)	acc. (%)
SiLU	30.2	4.91	1686	571	82.60
GELU	30.2	4.91	1680	570	82.53
ReLU	30.2	4.91	1684	577	82.65

The performance of VMamba-T with different learning rate

learning rate	Params	FLOPs	TP.	Train TP.	Top-1
rearning rate	(M)	(G)	(img/s)	(img/s)	acc. (%)
5e-4	30.2	4.91	1686	571	82.16
1e-3	30.2	4.91	1686	571	82.62
2e-3	30.2	4.91	1686	571	82.70

It is important to choose an optimal combination of ssm-ratio, mlp-ratio, and layer numbers for constructing a model that balances effectiveness and efficiency.

The trade-off between $\texttt{d_state}$ and ssm-ratio with VMamba-T

	ssm-ratio	Params	FLOPs	TP.	Train TP.	Top-1
u_state	SSM-Iatio	(M)	(G)	(img/s)	(img/s)	acc. (%)
1	2.0	30.7	4.86	1340	464	82.49
2	2.0	30.8	4.98	1269	432	82.50
4	2.0	31.0	5.22	1147	382	82.51
8	1.5	28.6	5.04	1148	365	82.69
16	1.0	26.3	4.87	1164	358	82.31

The trade-off between layer numbers and ssm-ratio with VMamba-T

layer	ssm-ratio		FLOPs	TP.	Train TP.	1
numbers	Dom 10010	(M)	(G)	(img/s)	(img/s)	acc. (%)
[2,2,5,2]	2.0	30.7	4.86	1340	464	82.49
[2,2,5,2]	1.0	25.6	3.98	1942	647	81.87
[2,2,8,2]	1.0	30.2	4.91	1686	571	82.60

The trade-off between mlp-ratio and ssm-ratio with VMamba-T

mln_ratio	ssm-ratio	Params	FLOPs	TP.	Train TP.	Top-1
mrp-racio	SSM-Idtio	(M)	(G)	(img/s)	(img/s)	acc. (%)
4.0	1.0	30.2	4.91	1686	571	82.60
3.0	1.5	28.5	4.65	1419	473	82.75
2.0	2.5	29.9	4.95	1075	361	82.86

Thank you

