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Inverse Reinforcement Learning (IRL)
Introduction

• IRL: Given M = (S,A,H,d0,p) and πE , find “the” reward r
that makes πE optimal

• Ill-posedness: many reward functions make πE optimal

• Feasible Set: Rp,πE := {r : J∗(r ;p) = JπE
(r ;p)}
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Learning Setting
Introduction

• p, πE unknown

• τ trajectories with forward model for p → p̂

• τE trajectories in batch dataset for πE → π̂E

• p̂, π̂E → R̂

• Previous works analyse how many τ, τE are needed to
obtain R̂ ≈ Rp,πE in the tabular setting
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What about Linear MDPs?
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πE known
Limitations of the Feasible Set

Theorem
Let πE known. Then, we can design an algorithm such
that

H
(
R̂,Rp,πE

)
≤ ϵ w.p. 1 − δ,

with a number of exploration episodes:

τ ≤ Õ
(

H5d
ϵ2

(
d + log

1
δ

))
.
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πE unknown
Limitations of the Feasible Set

Theorem
Let πE unknown. Assume to have access to a generative
model for πE . Then, any algorithm must collect at least

τE ≥ Ω(S)

samples to obtain

H
(
R̂,Rp,πE

)
≤ ϵ w.p. 1 − δ.

6



The feasible set cannot be learned
efficiently in Linear MDPs!
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Rewards Compatibility
A New Framework

• The feasible set
Rp,πE := {r : J∗(r ;p) = JπE

(r ;p)}

binary classifies rewards

• Some rewards are more
“compatible” than others:

Cp,πE (r) := J∗(r ;p)− JπE
(r ;p)

Rp,πE

R∁
p,πE

Rp,πE
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IRL Classification Formulation
A New Framework

• IRL Classification Problem: (M, πE ,R,∆)

∀r ∈ R : if Cp,πE (r) ≤ ∆ then return True, else return False.

• IRL Classification Algorithm: Input: r ∈ R, output: boolean.

Rp,πE

R∆
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Learning Setting
A New Framework

• p, πE unknown
• τ trajectories with forward model for p → p̂
• τE trajectories in batch dataset for πE → π̂E

PAC Algorithm: Let ϵ, δ ∈ (0,1). An algorithm A is (ϵ, δ)-PAC for
the IRL classification problem if:

sup
r∈R

∣∣∣Cp,πE (r)− Ĉ(r)
∣∣∣ ≤ ϵ w.p. 1 − δ.

0 R
∆

C(r)

−ϵ +ϵ

0 R
∆

C(r)

−ϵ +ϵ

0 R
∆

−ϵ +ϵ
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The Algorithm
CATY-IRL

CATY-IRL (CompATibilitY for
IRL) is made of two phases:

• Exploration phase
• Classification phase

Exploration phase

Classification phase

Input:
expert dataset DE ,
threshold ∆, set of

rewards to classify R

Collect exploration dataset D

Input:
reward to clas-

sify r P R

Estimate ĴEprq «
Jπ

E pr; pq using DE

Estimate Ĵ˚prq « J˚pr; pq
via planning with D

Classify reward
pCprq “ Ĵ˚prq ´ ĴEprq

pCprq ď ∆?

class Ð True class Ð False

Output:
class

yes no
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Jπ

E pr; pq using DE
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Sample Complexity Analysis
CATY-IRL

Theorem
In tabular MDPs, CATY-IRL executed with RF-Express
(Menard et al., 2021) is (ϵ, δ)-PAC with a sample com-
plexity:

τE ≤ Õ
(H3SA

ϵ2 log
1
δ

)
, τ ≤ Õ

(H3SA
ϵ2

(
S + log

1
δ

))
.

Theorem
In linear MDPs, CATY-IRL executed with RFLin (Wagen-
maker et al., 2022) is (ϵ, δ)-PAC with a sample complexity:

τE ≤ Õ
(H3d

ϵ2 log
1
δ

)
, τ ≤ Õ

(H5d
ϵ2

(
d + log

1
δ

))
.
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(H3SA

ϵ2 log
1
δ

)
, τ ≤ Õ
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Theoretical Limits of IRL and RFE
Statistical Barriers

Theorem
IRL Classification and RFE enjoy the same lower bound
to the sample complexity in the tabular setting, which
is matched, respectively, by CATY-IRL and RF-Express
(Menard et al., 2021):

τ ≥ Ω

(
H3SA
ϵ2

(
S + log

1
δ

))
.

This improves over the state-of-the-art lower bound of RFE by
one H factor (Jin et al., 2020).
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Objective-Free Exploration (OFE)
A Unifying Exploration Framework

What is the most efficient exploration strategy that can be
performed in an unknown environment?

It depends on the subsequent task that shall be solved!

Definition
Given a tuple (M,F , (ϵ, δ)), where M is an unknown
environment and F is a certain class of tasks, the
Objective-Free Exploration (OFE) problem aims to find an
exploration strategy of the environment M that permits to
solve any task f ∈ F in an (ϵ, δ)-correct manner.
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Summary of Contributions
Conclusion

• Non-learnability of the feasible set in Linear MDPs

• Rewards compatibility

• CATY-IRL, an efficient algorithm for IRL classification

• Matching lower bound for the tabular setting

• Objective-free exploration (OFE)
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