

Prospective Representation Learning for Non-Exemplar Class-Incremental Learning

Wuxuan Shi¹, Mang Ye^{1,2*}

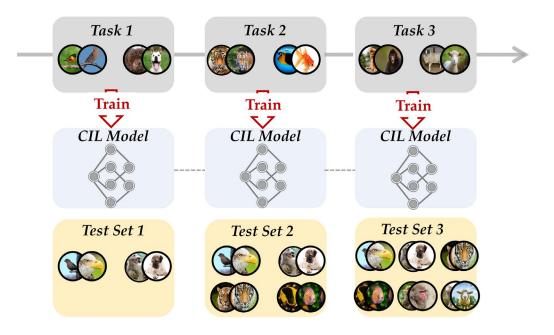
* Corresponding Author

¹School of Computer Science, Wuhan University

²Hubei Luojia Laboratory

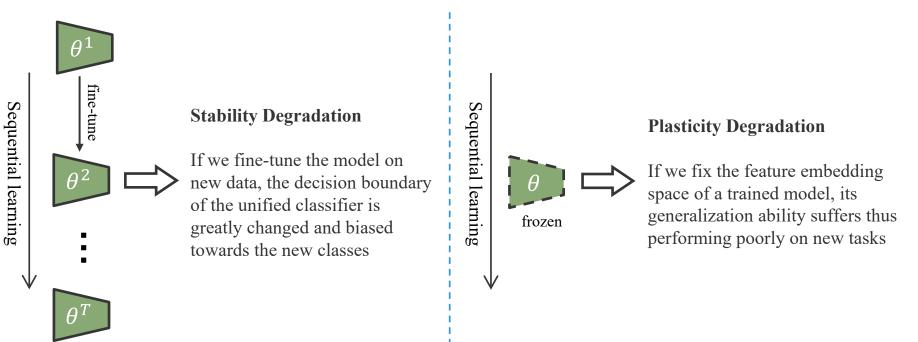
Background

Class-Incremental Learning



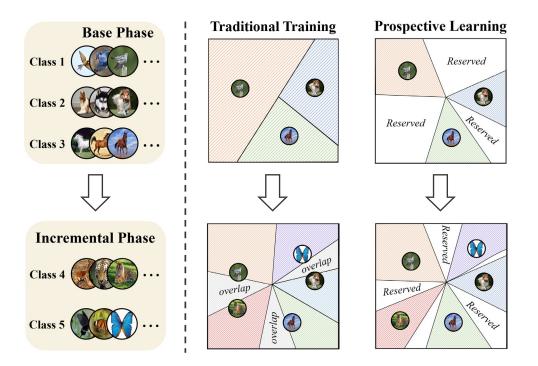
- Learns continuously from a sequential data stream in which new classes occur
- Perform multi-class
 classification for all classes
 observed so far
- ③ Computational requirements and memory footprint remain bounded

Background



Motivation

• Conflicts between Old and New classes



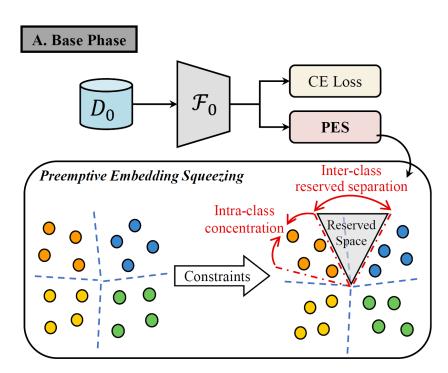
Traditional Training:

- Divide up all the embedding in the base phase
- Deal with the conflicts after a new task comes in

Prospective Learning:

- (1) Reserve space for unknown classes
- 2 Make the newly coming class embedded in the reserved space

Method



• Preemptive Embedding Squeezing (PES)

During the base phase (t = 0):

Reinforce intra-class concentration and inter-class reserved separation:

$$s = \sum_{\substack{\forall x^i, x^j \in B \\ i \neq j \\ y_i = y_j}} \langle \mathcal{F}_{\theta_t}(x^i), \mathcal{F}_{\theta_t}(x^j) \rangle,$$

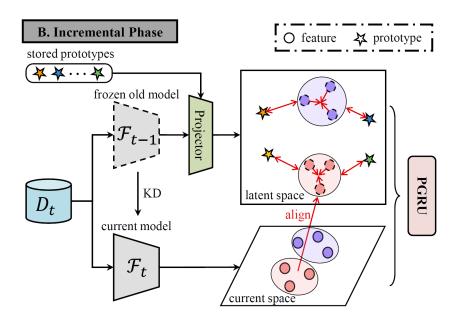
$$d = \sum_{\substack{\forall x^i, x^k \in B \\ y_i \neq y_k}} \langle \mathcal{F}_{\theta_t}(x^i), \mathcal{F}_{\theta_t}(x^k) \rangle,$$
$$\mathcal{L}_{PES}(\theta_t; D_t) = (1 - s) + \lambda * (1 + d),$$

> Optimize the model with CE loss:

 $\mathcal{L}_t = \mathcal{L}_{ce}(\theta_t, \varphi_t; D_t) + \gamma * \mathcal{L}_{PES}(\theta_t; D_t).$

Method

• Prototype-Guided Representation Update (PGRU)



During the incremental phase (t > 0):

Employs prototypes as proxies for past classes to embed new classes into appropriate space:

$$\mathcal{L}_{ort} = \sum_{\substack{\forall x^i \in B \\ \forall \boldsymbol{p}^c \in \boldsymbol{P}_{0:t-1}}} |\langle \mathcal{P}_{\phi_t}(\mathcal{F}_{\theta_{t-1}}(x^i)), \mathcal{P}_{\phi_t}(\boldsymbol{p}^c) \rangle|$$

Align the current embedding space with the latent space:

$$\mathcal{L}_{align} = \sum_{x \in X_i} \mathcal{L}_{MSE}(\mathcal{P}_{\phi_t}(\mathcal{F}_{\theta_{t-1}}(x^i)), \mathcal{F}_{\theta_t}(x^i))$$

> PGRU loss:

$$\mathcal{L}_{PGRU} = \mathcal{L}_{ort}(\phi_t; D_t, \boldsymbol{P}_{0:t-1}) + \mathcal{L}_{align}(\theta_t, \phi_t; D_t).$$

Experiment

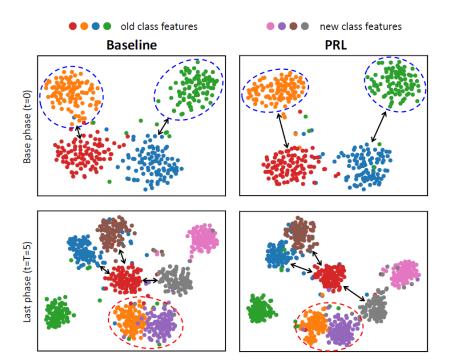
Average Incremental Accuracy

Table 1. Quantitative comparisons of the average incremental accuracy (%) with other methods on CIFAR-100, TinyImageNet, ImageNet-Subset, and ImageNet-1K. *P* represents the number of incremental phases. The best performance is shown in **bold**, and the sub-optimal performance is <u>underlined</u>. The relative improvement compared to the SOTA NECIL methods is shown by the red.

Methods	CIFAR-100			TinyImageNet			ImageNet-Subset			ImageNet-1K
	<i>P</i> =5	<i>P</i> =10	<i>P</i> =20	<i>P</i> =5	<i>P</i> =10	P=20	<i>P</i> =5	<i>P</i> =10	P=20	P=10
Fine-tuning	23.15	12.96	7.93	18.64	10.68	5.75	23.43	13.12	7.96	11.32
Upper Bound	76.72	76.72	76.72	59.12	63.08	63.08	78.94	78.94	78.94	68.58
EWC [17]	24.48	21.20	15.89	18.80	15.77	12.39		20.40		
LwF_MC [35]	45.93	27.43	20.07	29.12	23.10	17.43	_	31.18		
MUC [24]	49.42	30.19	21.27	32.58	26.61	21.95	_	35.07	_	
SDC [50]	56.77	57.00	58.90	_			_	61.12	_	_
PASS [57]	63.47	61.84	58.09	49.55	47.29	42.07	64.40	61.80	51.29	55.90
SSRE [58]	65.88	65.04	61.70	50.39	48.93	48.17	_	67.69		58.12
SOPE [59]	66.64	65.84	61.83	53.69	52.88	<u>51.94</u>	_	<u>69.22</u>		<u>60.20</u>
POLO [45]	68.95	68.02	65.71	<u>54.90</u>	<u>53.38</u>	49.93	<u>70.81</u>	69.11	—	
PRAKA [40]	70.02	68.86	65.86	53.32	52.61	49.83	69.81	68.98	<u>63.95</u>	57.42
NAPA-VQ [28]	<u>70.44</u>	<u>69.04</u>	<u>67.42</u>	52.77	51.78	49.51	69.15	68.83	63.09	54.21
PRL(Ours)	71.29	70.23	68.32	58.16	57.04	54.71	72.85	71.50	66.88	62.57
Improvement	+0.85	+1.19	+0.90	+3.26	+3.66	+2.77	+2.04	+2.28	+2.93	+2.37

Experiment

• Visualization



Highlight inter-class separation

Highlight intra-class concentration

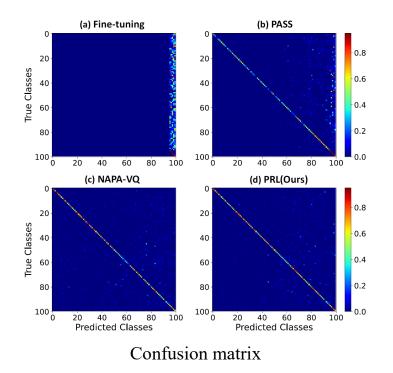
Highlight overlap between old and new classes

Model with PRL:

- More clustered intra-class distributions
- More dispersed inter-class distributions

Experiment

• Plasticity and stability analysis



The **diagonal entries** indicate correct classification The **non-diagonal entries** indicate misclassification

Finetune: strong confusion on the last task

PASS: slightly biased toward recently learned tasks

NAPA-VQ: more accurate for the initial classes

PRL(Ours): higher average accuracy, more balanced performance on old and new classes

Thank you !

https://github.com/ShiWuxuan/NeurIPS2024-PRL

Slide 10