Learn more, but bother less: parameter efficient continual learning

Fuli Qiao and Mehrdad Mahdavi

Machine Learning and Optimization Lab Department of Computer Science & Engineering Pennsylvania State University

Introduction

Significance and Limitation of Large Language Models

• Large Language Models (LLMs) have demonstrated exceptional performance across a broad spectrum of tasks, significantly

• **Limitation of Full Fine-Tuning**: Computationally expensive in adapting pre-trained models to a large number of

- revolutionizing the landscape in diverse areas driven by artificial intelligence. **However:**
	- downstream tasks.
	- **Continual Learning Challenges**:
		- deteriorates upon training with new data.
		- **Forward Transfer**: harnessing knowledge from old tasks to enhance the learning of new tasks.

• **Catastrophic Forgetting**: when learning multiple sequential tasks, model performance on previous tasks significantly

Parameter-Efficient Tuning (PET) for Continual Learning (CL)

• **Low-rank Adaptation**: LoRA [1] and its variants have been proposed to prompt parameter-efficient learnings for LLMs. • **Existing PET methods for CL** primarily focused on mitigating forgetting issue [2], often overlook the equally important

-
- objective of facilitating forward knowledge transfer.

References

[1] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021. [2] Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and Xuanjing Huang. Orthogonal subspace learning for language model continual learning. arXiv preprint arXiv:2310.14152, 2023. • **Non-PET in CL**: while existing non-PET knowledge transfer in CL have distinctive approaches, they are not

Knowledge Transfer among Tasks

- directly applicable to CL in PET framework due to prohibitive computational costs.
-

• **Knowledge Transfer in Parameter-Efficient Fine-Tuning for LLMs**: parametric knowledge transfer paradigm [3] uses knowledge embedded within a teacher's parameters by extracting task-specific parameters and injecting them into a student model via sensitivity metrics, however, such methods do **NOT** exist in CL for LLMs.

Table 1: Testing accuracy of \mathcal{T}_1 and \mathcal{T}_2 after training \mathcal{T}_2 with different layer replacements, highlighting the bestperforming strategy as shown in Fig. $|1|$

Motivation Experiments

References

[3] Ming Zhong, Chenxin An, Weizhu Chen, Jiawei Han, and Pengcheng He. Seeking neural nuggets: Knowledge transfer in large language models from a parametric perspective. In The Twelfth International Conference on Learning

Novel Parameter-Efficient Continual Learning Framework for LLMs

through low-rank orthogonal subspace learning for new tasks

Superior Performance over Existing State-of-the-art Approaches

existing state-of-the-art approaches on standard continual learning benchmarks

In-depth Analysis for Parametric Knowledge within CL for LLMs

within CL for LLMs, pinpointing critical factors that drives its effectiveness

• Balance generalization through parametric knowledge transfer and mitigation of forgetting

• Through comprehensive evaluations, our method demonstrates superior performance over

• Provide in-depth analysis to deepen understanding of the dynamics of parametric knowledge

Seeking to explore a new dimension in CL for LLMs

How can we effectively inject knowledge from previous tasks into new tasks (for improving generalization) while maintaining the orthogonality of each task's low-rank subspaces (for mitigating forgetting) to facilitate parameter-efficient continual learning?

Contribution

Continual Learning (CL) Problem Setup

- $\mathbf{X}_k = \{(\mathbf{x}_{k,i}, y_{k,i})\}_{i=1}^{n_t}$ where $\mathbf{x}_{k,i} \in \mathcal{X}_k$ and $\{\mathcal{T}_1, \mathcal{T}_2, ..., \mathcal{T}_T\}$ over time, each \mathcal{T}_k with data distribution \mathcal{D}_k $\mathcal{X}_{i=1}^{n_t}$ where $\mathbf{x}_{k,i} \in \mathcal{X}_k$ and $y_{k,i} \in \mathcal{Y}_k$
- (singular values $\{\lambda_i\}_{1 \leq i \leq r}$ with $r \ll \min(d_1, d_2)$), and to enforce orthogonality, use regularizer: $\mathscr{R}(U, V) = ||U^{\top}U - I||_{\text{F}}^2 + ||VV^{\top} - I||_{\text{F}}^2$

Two Stages of Our Method (LB-CL)

-
-

• A sequence of tasks $\{T_1, T_2, ..., T_T\}$ over time, each \mathcal{T}_k with data distribution \mathcal{D}_k and a separate target dataset

• Incremental SVD-based low-rank matrix $\bm{U}^k\bm{\Sigma}^k\bm{V}^k$ to fine-tune task $\bm{\mathcal{T}}_k$, where $\bm{U}^k\in\mathbb{R}^{d_1\times r}$, $\bm{V}^k\in\mathbb{R}^{r\times d_2}$, and $\bm{\Sigma}^k\in\mathbb{R}^{r\times r}$

• **(i)** Learning from knowledge extraction and injection, which transfers knowledge from previously learned tasks to new tasks by incremental SVD triplet (a singular value and its corresponding singular vectors) sensitivity metric

• Goal:
$$
\max_{\theta} \sum_{k=1}^{T} \sum_{(x,y) \in \mathcal{T}_k} \log p_{\theta}(y | x)
$$
, where $\theta = W_0 + \sum_{k=1}^{T} U^k \Sigma^k V^k$ and W_0 is pre-trained model

• **(ii)** Training in Orthogonal Subspaces, which keeps low-rank subspaces of new tasks orthogonal to those of old tasks

CL Maestro: Learn More but Bother Less

CL Maestro: Learn More but Bother Less

Two Stages of Our Method (LB-CL)

-
- **(ii)** Training in Orthogonal Subspaces, which keeps low-rank subspaces of new tasks orthogonal to those of old tasks

orthogonal gradient projection to minimize forgetting.

• (i) Learning from knowledge extraction and injection, which transfers knowledge from previously learned tasks to new tasks by incremental SVD triplet (a singular value and its corresponding singular vectors) sensitivity

Figure 2: Overview of our LB-CL framework. Starting with the pre-trained model including SVD weights of previous tasks, sensitivity metrics are calculated using a set of seed samples, facilitating the extraction of task-specific knowledge. Subsequently, the extracted layer triplets initialize SVD weights for the new task. Then, the new task is trained in an orthogonal subspace, employing

• Metric: Define the testing accuracy on task \mathcal{T}_i after training on task \mathcal{T}_j as $a_{i,j}$. The main metric for evaluation is *T*

Average Accuracy (AA), calculated as the mean accuracy across all tasks after training on the last task: 1 *T*

Table 2. Testing performance on two standard CL benchmalks with TD-large.								
	Standard CL Benchmark				Large Number of Tasks			
	Order-1	Order-2	Order-3	avg	Order-4	Order-5	Order-6	avg
SeqFT	18.9	24.9	41.7	28.5	7.4	7.3	7.4	7.4
SeqLoRA	39.5	31.9	46.6	39.3	4.9	3.5	4.2	4.2
IncLoRA	63.4	62.2	65.1	63.6	63.0	57.9	60.4	60.5
SeqSVD	40.0	63.3	44.9	49.4	13.7	13.8	12.2	13.2
Replay	50.3	52.0	56.6	53.0	54.5	54.3	53.5	54.1
EWC	46.3	45.3	52.1	47.9	44.9	44.0	45.4	44.8
LwF	52.7	52.9	48.4	51.3	49.7	42.8	46.9	46.5
L2P	59.0	60.5	59.9	59.8	57.7	53.6	56.6	56.0
LFPT5	66.6	71.2	76.2	71.3	69.8	67.2	69.2	68.7
L-CL	75.3	73.5	71.9	73.6	66.5	64.0	69.0	66.5
B-CL	76.4	71.5	75.1	74.3	65.7	66.4	69.2	67.1
NLNB-CL	76.0	73.4	74.0	74.5	67.6	65.3	62.6	65.2
O-LoRA	74.9	75.3	75.9	75.4	70.5	65.5	70.5	68.8
$LB-CL$	76.9	76.5	76.8	76.7	68.4	67.3	71.8	69.2
ProgPrompt	76.1	76.0	76.3	76.1	78.7	78.8	77.8	78.4
PerTaskFT	70.0	70.0	70.0	70.0	78.1	78.1	78.1	78.1
MTL	80.0	80.0	80.0	80.0	76.3	76.3	76.3	76.3

Table 2. Testing performance on two standard CI benchmarks with T5 large

∑

i=1

Experiments on Continual Learning Benchmarks

Experiments on In-depth Analysis of LB-CL

Different initialization strategies Number of seed samples

Figure 3: Comparison of different initialization strategies across three orders of standard CL benchmark. The "Avg" value represents the average testing accuracy, illustrating how each strategy stabilizes learning performance.

Different pre-trained models Optimal Ranks

Figure 4: Impact analysis of seed sample quantity on the performance in LB-CL, evaluated across three orders of standard CL benchmark. This investigation highlights the influence of initial seed samples on model effectiveness.

Training computation costs

Table 3: Comparison of training computation cost between LB-CL and O-LoRA.

		Method GPU Memory Num of training params/task
O-LoRA	24.82 GB	$r(m+n)$
LB-CL	28.28 GB	$r(m+n)+r$

Table 5: Comparisons of different models' performances across three task orders in standard CL benchmark.

Table 4: Comparisons of different rank r of lowrank matrix. This experiment is conducted based on T5-large in standard CL benchmark.

Parametric Knowledge Distribution

Figure 5: Comparison of sensitivity scores and Fisher information of encoder and decoder Layers, and both results are the average results of three task orders in standard CL benchmark.

• Investigated the balance between overcoming forgetting and achieving generalization in continual learning for

• Decomposed generalization error with the task low-rank matrix initialization, then proposed a novel framework, LB-CL, explored parametric knowledge transfer between tasks and utilized the inherent forgetting less ability of

- LLMs
- low-rank matrix
- merged into the pre-trained model
- Experiments across standard CL benchmarks validate the effectiveness of LB-CL
-

• Instead of storing extra task-specific auxiliary parameters, only utilize low-rank parameters which would be

• Analyzed critical factors influencing initialization in CL, providing insights for further enhancements in this field

