periments 0000000 Conclusion

References 00 Co-authors 00

Block Sparse Bayesian Learning: A Diversified Scheme

Yanhao Zhang, Zhihan Zhu

School of Mathematical Sciences, Beihang University

Nov 1, 2024

Joint work with Prof. Yong Xia

Compressed Sensing [Donoho, 2006] / Sparse Regression :

In compressed sensing, **x** often exhibits transform sparsity, becoming sparse in a transform domain such as Wavelet, Fourier, etc.

Classical Methods:

- Orthogonal Matching Pursuit (OMP) [Pati et al., 1993]
- ℓ_1 -Minimization: Basis Pursuit [Chen et al., 2001], LASSO [Tibshirani, 1996]
- Replacing $\|\cdot\|_1$ with other non-convex regularization such as $\|\cdot\|_p (0 [Frank and Friedman, 1993] or SCAD [Fan and Li, 2001] leads to a non-convex programming.$

Introduction 0●00	Diversified Block Sparse Bayesian Model	Experiments 00000000	Conclusion O	References OO	

Block Sparse Phenomenon

Relying solely on the sparsity of **x** *is insufficient, particularly when sample sizes are limited*.[Eldar et al., 2010, Donoho et al., 2013]

Widely encountered real-world data, such as image and audio, often exhibit **block sparsity** or in their transform domain.

Introduction 00●0	Diversified Block Sparse Bayesian Model	Experiments 00000000	Conclusion O	References OO	
Block S	parsity				

Block Sparsity: the sparse non-zero entries of **x** appear in blocks [Eldar et al., 2010]. Generally, the block structure of **x** with *g* blocks is defined by

$$\mathbf{x} = [\underbrace{x_1 \dots x_{d_1}}_{\mathbf{x}_1^T} \underbrace{x_{d_1+1} \dots x_{d_1+d_2}}_{\mathbf{x}_2^T} \cdots \underbrace{x_{N-d_g+1} \dots x_N}_{\mathbf{x}_g^T}]^T,$$
(1)

Suppose only $k(k \ll g)$ blocks are non-zero, indicating that **x** is block sparse.

• **Question**: How can block information be used to achieve better accuracy in sparse recovery problems?

Introduction	Diversified Block Sparse Bayesian Model	Experiments 00000000	Conclusion O	References OO	
Block S	Sparse Recovery				

Literature Review

Algorithms:

Block-based:

- Group-Lasso [Yuan and Lin, 2006]
- Group Basis Pursuit [Van den Berg and Friedlander, 2011]
- Block-OMP [Eldar et al., 2010]
- Block-SBL (BSBL) [Zhang and Rao, 2013]

• Pattern-based:

- StructOMP [Huang et al., 2009]
- Pattern-Coupled SBL (PC-SBL) [Fang et al., 2014]
- Burst PC-SBL [Dai et al., 2018]

Remark 1

Longstanding Issue (block-based algorithms): Highly dependent on predefined block information, leading to simultaneous learning of block elements as either 0 or \sim 0 based on the predefined blocks.

Introduction	Diversified Block Sparse Bayesian Model	Experiments	Conclusion	References	
0000	•୦୦୦୦୦୦୦୦୦୦	00000000	O	OO	
Probler	n Setting				

Observation model: Consider block sparse recovery problem as

$$\mathbf{y} = \mathbf{\Phi}\mathbf{x} + \mathbf{n},\tag{2}$$

x exhibits block sparse structure, yet its partition is unknown.

Model Setting (Block-based): All blocks have equal size *L*, with total dimension denoted as N = gL. Henceforth, **x** follows the structure:

$$\mathbf{x} = [\underbrace{x_{11} \dots x_{1L}}_{\mathbf{x}_1^T} \underbrace{x_{21} \dots x_{2L}}_{\mathbf{x}_2^T} \cdots \underbrace{x_{g1} \dots x_{gL}}_{\mathbf{x}_g^T}]^T.$$
(3)

 The choice of L is important and sensitive to existing block-based methods!

Introduction 0000	Diversified Block Sparse Bayesian Model	Experiments 00000000	Conclusion O	References 00	
Previo	us Works				

- Group Lasso [Yuan and Lin, 2006]: $\min_{\mathbf{x}} \frac{1}{2} \| \mathbf{\Phi} \mathbf{x} \mathbf{y} \|_{2}^{2} + \tau \sum_{i=1}^{g} \| \mathbf{x}_{i} \|_{2}$.
- Group BPDN: [Van den Berg and Friedlander, 2011]

$$\min_{\mathbf{x}}\sum_{i=1}^{g} \|\mathbf{x}_{i}\|_{2} \quad \text{s.t.} \|\mathbf{\Phi}\mathbf{x}-\mathbf{y}\| \leq \sigma.$$

- **Block OMP** [Eldar et al., 2010]: heuristically select blocks instead of elements.
- Block Sparse Bayesian Learning [Zhang and Rao, 2013]:

$$\boldsymbol{p}(\mathbf{x}_{i};\{\gamma_{i},\mathbf{B}_{i}\}) = \mathcal{N}(\mathbf{0},\gamma_{i}\mathbf{B}_{i}), \forall i = 1,\cdots,g,$$
(4)

- All of the block-based algorithms estimate one block to be either zero or non-zero simultaneously!
- Can we overcome the sensitivity issue for block-based methods?

 Introduction
 Diversified Block Sparse Bayesian Model
 Experiments
 Conclusion
 References
 Co-authors

 Diversified Block Sparse Prior
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O

Diversified Block Sparse Prior: Each block $\mathbf{x}_i \in \mathbb{R}^{L \times 1}$ is assumed to follow a multivariate Gaussian prior

$$\boldsymbol{p}(\mathbf{x}_i; \{\mathbf{G}_i, \mathbf{B}_i\}) = \mathcal{N}(\mathbf{0}, \mathbf{G}_i \mathbf{B}_i \mathbf{G}_i), \forall i = 1, \cdots, g,$$
(5)

- **G**_{*i*} : Diversified Variance matrix.
- **B**_{*i*} : Diversified Correlation matrix.
- The formulations of **G**_{*i*} and **B**_{*i*} will be detailed later.

D .		D ·		
	0000000000			
Introduction	Diversified Block Sparse Bayesian Model	Experiments	Conclusion	

Diversified Block Sparse Prior

The prior distribution of the entire signal **x** is denoted as

$$p\left(\mathbf{x}; \{\mathbf{G}_{i}, \mathbf{B}_{i}\}_{i=1}^{g}\right) = \mathcal{N}\left(\mathbf{0}, \mathbf{\Sigma}_{0}\right), \tag{6}$$

where $\pmb{\Sigma}_0 = \text{diag}\left\{\pmb{\mathsf{G}}_1 \pmb{\mathsf{B}}_1 \pmb{\mathsf{G}}_1, \pmb{\mathsf{G}}_2 \pmb{\mathsf{B}}_2 \pmb{\mathsf{G}}_2, \cdots, \pmb{\mathsf{G}}_g \pmb{\mathsf{B}}_g \pmb{\mathsf{G}}_g\right\}\!.$

Introduction 0000	Diversified Block Sparse Bayesian Model	Experiments 00000000	Conclusion O	References OO	
Divers	ified Block Sparse	e Prior			
	industry Dinels Vertice of				

Diversified intra-block variance:

• **G**_i is defined as

$$\mathbf{G}_{i} \triangleq \operatorname{diag}\{\sqrt{\gamma_{i1}}, \cdots, \sqrt{\gamma_{iL}}\},\tag{7}$$

• $\mathbf{B}_i = [\rho_{sk}^i]_{s,k=1\cdots L}$ is a positive definite correlation matrix of the *i*-th block.

According to the definition of Pearson correlation, the covariance term $G_i B_i G_i$ can be specified as

$$\mathbf{G}_{i}\mathbf{B}_{i}\mathbf{G}_{i} = \begin{bmatrix} \gamma_{i1} & \rho_{12}^{i}\sqrt{\gamma_{i1}}\sqrt{\gamma_{i2}} & \cdots & \rho_{1L}^{i}\sqrt{\gamma_{i1}}\sqrt{\gamma_{iL}}\\ \rho_{21}^{i}\sqrt{\gamma_{i2}}\sqrt{\gamma_{i1}} & \gamma_{i2} & \cdots & \rho_{2L}^{i}\sqrt{\gamma_{i2}}\sqrt{\gamma_{iL}}\\ \vdots & \vdots & \ddots & \vdots\\ \rho_{L1}^{i}\sqrt{\gamma_{iL}}\sqrt{\gamma_{i1}} & \rho_{L2}^{i}\sqrt{\gamma_{iL}}\sqrt{\gamma_{i2}} & \cdots & \gamma_{iL} \end{bmatrix},$$

Introduction 0000	Diversified Block Sparse Bayesian Model	Experiments 00000000	Conclusion O	References OO	
Divers	ified Block Sparse	Prior			
(A) Diversifi	ed Intra-Block Variance				

Adaptive blocksize / Insensitivity of preset blocksize L:

 Both size and location of blocks will automatically shrink through posterior inference on the variances term.

Introduction 0000	Diversified Block Sparse Bayesian Model	Experiments 00000000	Conclusion O	References OO	
Divers	ified Block Sparse	Prior			
(B) Diversif	ied inter-block correlation				

Here we introduce weak constraints on **B**_i, specifically,

$$\psi(\mathbf{B}_i) = \psi(\mathbf{B}) \quad \forall i = 1...g,$$
 (8)

where $\psi : \mathbb{R}^{L^2} \to \mathbb{R}$ is the weak constraint function and **B** is obtained from the strong constraints $\mathbf{B}_i = \mathbf{B}(\forall i)$.

Weak constraints (8) :

- capture the distinct correlation structure but also avoid overfitting issue.
- effectively enhance the convergence rate of the algorithm (Number of constraints: $gL^2 \rightarrow g$).

Introduction 0000	Diversified Block Sparse Bayesian Model	Experiments 00000000	Conclusion O	References OO	
Diversit	fied Correlation N	Aatrices	by Dua	l Ascen	f

How to choose the constraint function ψ ?

- Explicit constraints with complete dual ascent.
- Hidden constraints with one-step dual ascent.

Diversified Block Sparse Bayesian Model	Experiments	Conclusion	
00000000000			

Proposition 1

Define an explicit weak constraint function $\zeta : \mathbb{R}^{n^2} \to \mathbb{R}$. For the constrained optimization problem:

$$\min_{\mathbf{B}_i} \quad Q(\{\mathbf{B}_i\}_{i=1}^g, \{\mathbf{G}_i\}_{i=1}^g)$$
s. t. $\zeta(\mathbf{B}_i) = \zeta(\mathbf{B}), \quad \forall i = 1...g$

the stationary point $(\{\mathbf{B}_{i}^{k+1}\}_{i=1}^{g}, \{\lambda_{i}^{k}\}_{i=1}^{g})$ of the Lagrange function under given multipliers $\{\lambda_{i}^{k}\}_{i=1}^{g}$ satisfies:

$$\nabla_{\mathbf{B}_i} Q(\{\mathbf{B}_i^{k+1}\}_{i=1}^g, \{\mathbf{G}_i\}_{i=1}^g) - \lambda_i^k \nabla \zeta(\mathbf{B}_i^{k+1}) = 0.$$

Then there exists a constrained optimization problem with hidden weak constraint $\psi : \mathbb{R}^{n^2} \to \mathbb{R}$:

$$\min_{\mathbf{B}_{i}} \quad Q(\{\mathbf{B}_{i}\}_{i=1}^{g}, \{\mathbf{G}_{i}\}_{i=1}^{g})$$

$$\text{ t. } \psi(\mathbf{B}_i) = \psi(\mathbf{B}), \quad \forall i = 1...g,$$

such that $({\mathbf{B}_{i}^{k+1}}_{i=1}^{g}, {\lambda_{i}^{k}}_{i=1}^{g})$ is a KKT pair of the above optimization problem.

00	000000000000	000000000			
ost	erior Estimation				
Dive	ersified S parse B ayesian Learn	ing (DivS	BL):		
Al	gorithm 1 DivSBL Algorithm				
1:	Input: Measurement matrix $\mathbf{\Phi}$, response \mathbf{y} , initia	lized variance -	γ, prior's covarian	ice Σ_0 , noise's var	iance
2: 3:	Output: Posterior mean $\hat{\mathbf{x}}^{MAP}$, posterior covaria repeat	nce $\hat{\Sigma}$, varianc	e $\hat{\boldsymbol{\gamma}},$ correlation $\hat{\mathbf{E}}$	$\hat{\mathbf{B}}_i$, noise $\hat{\beta}$.	
4: 5:	if mean(γ_l .) < threshold then Prune γ_l from the model (set γ_l . = 0).		// Zero out sma	ll energy for efficie	ency.
6: 7:	Set the corresponding $\mu^{l} = 0, \Sigma^{l} = 0_{L \times L}$. end if				
8:	Update $\gamma_{ij} \leftarrow \frac{4\mathbf{A}_{ij}}{(\sqrt{\mathbf{T}_{ij}^2 + 4\mathbf{A}_{ij}} - \mathbf{T}_{ij})^2}$.		// Upda	te diversified varia	ance.
9:	Update $\mathbf{B} \leftarrow rac{1}{g} \sum_{i=1}^{g} \mathbf{G}_{i}^{-1} \left(\mathbf{\Sigma}^{i} + \boldsymbol{\mu}^{i} \left(\boldsymbol{\mu}^{i} ight)^{T} ight)$	\mathbf{G}_i^{-1} .		// Avoid overfit	ting.
10:	Update \mathbf{B}_i by $\mathbf{B}_i^{k+1} \leftarrow \frac{\mathbf{G}_i^{-1} \left(\mathbf{\Sigma}^i + \boldsymbol{\mu}^i \left(\boldsymbol{\mu}^i \right)^T \right) \mathbf{G}_i^{-1}}{1 + 2\lambda_i^k}$	1 	//	Diversified correla	tion.
11: 12:	Update λ_i by $\lambda_i^{k+1} \leftarrow \lambda_i^k + \alpha_i^k (\log \det \mathbf{B}_i^k - \text{Execute Toeplitz correction for } \mathbf{B}_i.$	$\log \det \mathbf{B}).$	//	Diversified correla	tion.
13:	Update $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ by $\boldsymbol{\mu} \leftarrow \beta \boldsymbol{\Sigma} \boldsymbol{\Phi}^T \mathbf{y}, \boldsymbol{\Sigma} \leftarrow \left(\boldsymbol{\Sigma}_0^-\right)$	$(\beta \Phi^T \Phi)^-$	1		
14:	Update $\beta \leftarrow \frac{M}{\ \mathbf{y} - \boldsymbol{\Phi}\boldsymbol{\mu}\ _2^2 + \operatorname{tr}(\boldsymbol{\Sigma}\boldsymbol{\Phi}^T\boldsymbol{\Phi})}$.				
15: 16:	$\hat{\mathbf{x}}^{MAP} = \boldsymbol{\mu}.$		// Use pos	sterior mean as esti	imate.

Diversified Block Sparse Bayesian Mo

・ロト・日本・日本・日本・日本・日本

Introduction 0000	Diversified Block Sparse Bayesian Model	Experiments 00000000	Conclusion O	References OO	
Divers	ified Block Sparse	e Prior			
Connection	is to classical models				

Two classic Sparse Bayesian Learning models, RVM [Tipping, 2001] and BSBL [Zhang and Rao, 2011], are special cases of our model.

• **Connection to RVM**: Taking **B**_{*i*} as identity matrix, diversified block sparse prior (6) immediately degenerates to RVM model

$$\boldsymbol{p}(\boldsymbol{x}_i;\gamma_i) = \mathcal{N}(\boldsymbol{0},\gamma_i), \forall i = 1,\cdots,N,$$
(9)

which means ignoring the correlation structure.

• Connection to BSBL: When G_i is scalar matrix $\sqrt{\gamma_i}I$, the formulation (5) becomes

$$\boldsymbol{\rho}(\mathbf{x}_i; \{\gamma_i, \mathbf{B}_i\}) = \mathcal{N}(\mathbf{0}, \gamma_i \mathbf{B}_i), \forall i = 1, \cdots, g,$$
(10)

which is exactly BSBL model. In this case, all elements within a block share common variance γ_i .

Introduction 0000	Diversified Block Sparse Bayesian Model	Experiments 00000000	Conclusion O	References OO	
Globa	land Local Proper	rtios			

Property of global minimum:

Theorem 1

As $\beta \to \infty$ and $K_0 < (M + 1)/2L$, the unique global minimum $\widehat{\gamma} \triangleq (\widehat{\gamma}_{11}, \dots, \widehat{\gamma}_{gL})^T$ yields a recovery $\hat{\mathbf{x}}$ that is equal to \mathbf{x}_{true} , regardless of the estimated $\widehat{\mathbf{B}}_i$ ($\forall i$).

Property of local minima:

Theorem 2

Every local minimum of the cost function with respect to γ satisfies $||\hat{\gamma}||_0 \leq \sqrt{M}$, irrespective of noise ($\forall \beta$) and the estimated $\hat{\mathbf{B}}_i$ ($\forall i$).

The above results ensure the sparsity of the final solution obtained.

Introduction 0000	Diversified Block Sparse Bayesian Model	Experiments 0000000	Conclusion O	References OO	
Experii	ments				

- Our algorithm: DivSBL.
- Compare with:
 - Block-based algorithms: (1) BSBL, (2) Group Lasso, (3) Group BPDN.
 - Pattern-based algorithms: (4) PC-SBL, (5) StructOMP.
 - Sparse learning (without structural information): (6) SBL.
- Metrics:
 - Normalized Mean Squared Error (NMSE): $||\hat{x} x_{true}||_2^2 / ||x_{true}||_2^2$.
 - Correlation (Corr)(cosine similarity): Corr(x, y) = x'y/(||x|| ||y||)

		0000000		
	Diversified Block Sparse Bayesian Model	Experiments	Conclusion	

Experiment 1: Synthetic Signal

Table: Reconstruction error (NMSE) and Correlation (mean±std) for synthetic signals.

Algorithm	NMSE	Corr			
0	Homoscedastic				
BSBL PC-SBL SBL Group Lasso	0.0132±0.0069 0.0450±0.0188 0.0263±0.0129 0.0215±0.0052	0.9936±0.0034 0.9784±0.0090 0.9825±0.0062 0.9925±0.0020			
Group BPDN StructOMP	0.0213 ± 0.0032 0.0378 ± 0.0087 0.0508 ± 0.0157	0.9929±0.0020 0.9812±0.0044 0.9760±0.0073			
DIVSBL	0.0094±0.0033	0.0020			
	Tieteros	ceuastic			
BSBL PC-SBL SBL	0.0245 ± 0.0125 0.0421 ± 0.0169 0.0274 ± 0.0095	0.9883±0.0047 0.9798±0.0082 0.9873±0.0040			
Group Lasso Group BPDN StructOMP	0.0806±0.0180 0.0857±0.0173 0.0419±0.0123	0.9642 ± 0.0096 0.9608 ± 0.0096 0.9803 ± 0.0061			
DivSBL	0.0086 ± 0.0041	0.9958 ± 0.0020			

(a)Homo-NMSE

(b)Homo-Corr

(c)Heter-NMSE

(d)Heter-Corr

3 🕨 🖌 3

The Robustness of Pre-defined Block Sizes

- Resolves the longstanding sensitivity issue of block-based algorithms.
- Exhibits enhanced recovery capability in challenging scenarios.

Figure: NMSE variation with changing preset block sizes.

< ロ > < 同 > < 回 > < 回 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Variance Learning.

Figure: Posterior variance of DivSBL & BSBL when L=20, 50, 125.

Audio signals display block sparse structures in the discrete cosine transform (DCT) basis.

Figure: Original Audio Signal¹

Figure: Sparse Representation

¹Available at https://research.google.com/audioset/.

Introduction 0000	Diversified Block Sparse Bayesian Model	Experiments 00000000	Conclusion O	References OO	
1D Auc	lioSet				

Phase transition diagram under different SNR (noise) and measurement levels.

Figure: Phase transition diagram.

Example:

Figure: Parrot and House image data (the first five columns) transformed in discrete wavelet domain.

² Available at http://dsp.rice.edu/software/DAMP-toolbox and http://see.xidian.edu.cn/faculty/wsdong/NLR_Exps.htm 📑 🛌 🎅 🔗

Introduction 0000	Diversified Block Sparse Bayesian Model	Experiments 0000000	Conclusion O	References 00	

Experiment 3: 2D Image Reconstruction

Table: Reconstructed error (NMSE \pm std) of the test images. (with an average improvement of 9.8%)

Algorithm Parrot	Cameraman	Lena	Boat	House	Barbara	Monarch	Foreman
BSBL 0.139 ± 0.004	0.156 ± 0.006	$\textbf{0.137} \pm \textbf{0.004}$	0.179 ± 0.007	0.146 ± 0.007	$0.142 \pm \textbf{0.004}$	0.272 ± 0.009	0.125 ± 0.007
PC-SBL 0.133 ± 0.013	0.150 ± 0.012	0.134 ± 0.013	0.159 ± 0.014	0.137 ± 0.013	0.137 ± 0.013	0.208 ± 0.010	0.126 ± 0.014
SBL 0.225 ± 0.121	0.247 ± 0.141	0.223 ± 0.129	0.260 ± 0.114	0.238 ± 0.125	0.228 ± 0.119	0.458 ± 0.106	0.175 ± 0.099
GLasso 0.139 ± 0.017	0.153 ± 0.016	0.134 ± 0.017	0.159 ± 0.018	0.141 ± 0.018	0.135 ± 0.016	0.216 ± 0.020	0.124 ± 0.017
GBPDN 0.138 ± 0.017	0.153 ± 0.017	0.134 ± 0.017	0.159 ± 0.019	0.133 ± 0.019	0.135 ± 0.017	0.218 ± 0.022	0.123 ± 0.017
StructOMP 0.161 ± 0.014	0.184 ± 0.013	0.159 ± 0.013	0.187 ± 0.014	0.162 ± 0.014	0.164 ± 0.013	0.248 ± 0.015	0.149 ± 0.016
DivSBL 0.117 ± 0.007	$\textbf{0.142} \pm \textbf{0.006}$	$\textbf{0.114} \pm 0.005$	$\textbf{0.150} \pm 0.008$	$\textbf{0.120} \pm \textbf{0.006}$	$\textbf{0.120} \pm 0.005$	$\textbf{0.203} \pm \textbf{0.008}$	$\textbf{0.101} \pm \textbf{0.007}$

Figure: Reconstruction results for Parrot and House images.

DivSBI

A B A A B A

Introduction 0000	Diversified Block Sparse Bayesian Model	Experiments 00000000	Conclusion O	References OO	
Conclu	ision				

- We introduce **Diversified Block Sparse Prior** to characterize block sparsity by allowing diversification on **intra-block variance** and **inter-block correlation matrices**.
- We propose **DivSBL**, utilizing EM algorithm and dual ascent method for hyperparameter estimation.
- We effectively **address the sensitivity issue** of existing block sparse learning methods to pre-defined block information.
- We establish the **optimality theory** and experiments validate its **state-of-the-art performance** on multimodal data.
- Future works include exploration on more effective weak constraints for correlation matrices, and applications on supervised learning tasks such as regression and classification.

Introduction 0000	Diversified Block Sparse Bayesian Model	Experiments 00000000	Conclusion O	References ●●	
Refere	ences l				
[Chen et al., Atomic de SIAM revie	2001] Chen, S. S., Donoho, D. L., and Saunders, M ecomposition by basis pursuit. ew, 43(1):129–159.	. A. (2001).			
[Dai et al., 20 Non-unif IEEE Trans	118] Dai, J., Liu, A., and So, H. C. (2018). orm burst-sparsity learning for massive MIMO chai sactions on Signal Processing, 67(4):1075–1087.	nnel estimation.			
[Donoho, 20 Compres IEEE Trans	06] Donoho, D. L. (2006). sed sensing. sactions on information theory, 52(4):1289–1306.				
[Donoho et a Accurate IEEE trans	al., 2013] Donoho, D. L., Johnstone, I., and Montar prediction of phase transitions in compressed sen actions on information theory, 59(6):3396–3433.	ari, A. (2013). sing via a connection to	minimax denoising.		
[Eldar et al., 2 Block-spa IEEE Trans	2010] Eldar, Y. C., Kuppinger, P., and Bolcskei, H. (arse signals: Uncertainty relations and efficient reco sactions on Signal Processing, 58(6):3042–3054.	2010). overy.			
[Fan and Li, 2 Variable <i>Journal oj</i>	2001] Fan, J. and Li, R. (2001). selection via nonconcave penalized likelihood and i f the American statistical Association, 96(456):1348–1	ts oracle properties. 360.			
[Fang et al., 2 Pattern-c IEEE Trans	2014] Fang, J., Shen, Y., Li, H., and Wang, P. (2014). oupled sparse Bayesian learning for recovery of bl sactions on Signal Processing, 63(2):360–372.	ock-sparse signals.			
[Frank and Fr A statistic Technome	riedman, 1993] Frank, L. E. and Friedman, J. H. (19 cal view of some chemometrics regression tools. etrics, 35(2):109–135.	993).			
[Huang et al. Learning In Procee	, 2009] Huang, J., Zhang, T., and Metaxas, D. (2009 with structured sparsity. dings of the 26th Annual International Conference on	9). Machine Learning, page	s 417–424.		

・ロト・日本・日本・日本・日本・日本

Introduction 0000	Diversified Block Sparse Bayesian Model	Experiments 00000000	Conclusion O	References ●●	
Refere	ences II				
[Pati et al., 19	9931 Pati. Y. C., Rezaiifar. R., and Krishnaorasad. P	. S. (1993).			

Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In Proceedings of 27th Asilomar conference on signals, systems and computers, pages 40–44. IEEE.

[Tibshirani, 1996] Tibshirani, R. (1996).

Regression shrinkage and selection via the lasso.

Journal of the Royal Statistical Society Series B: Statistical Methodology, 58(1):267-288.

[Tipping, 2001] Tipping, M. E. (2001).

Sparse Bayesian learning and the relevance vector machine. *Journal of machine learning research*, 1(Jun):211–244.

[Van den Berg and Friedlander, 2011] Van den Berg, E. and Friedlander, M. P. (2011). Sparse optimization with least-squares constraints. *SIAM Journal on Optimization*, 21(4):1201–1229.

[Yuan and Lin, 2006] Yuan, M. and Lin, Y. (2006).

Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society Series B: Statistical Methodology, 68(1):49–67.

[Zhang and Rao, 2011] Zhang, Z. and Rao, B. D. (2011).

Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning. IEEE Journal of Selected Topics in Signal Processing, 5(5):912–926.

[Zhang and Rao, 2013] Zhang, Z. and Rao, B. D. (2013).

Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation. *IEEE Transactions on Signal Processing*, 61(8):2009–2015.

< □ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Diversified Block Sparse Bayesian Model	Experiments	Conclusion	References	Co-authors
0000		00000000	O	OO	●O
Thanks to co-authors					

Zhang, Yanhao Beihang University

Zhu, Zhihan Beihang University

Prof. Xia, Yong Beihang University

Thanks for Your Attention!

