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Introduction

▶ Background: Out-of-Distribution (OOD) generalization is a
key challenge in machine learning when training and test
distributions differ significantly.

▶ Problem: Time series data present unique challenges for
OOD generalization due to temporal dependencies and
dynamic changes.

▶ Goal: We propose a novel tri-level learning framework
(TTSO) based on Large Language Models (LLMs) for time
series OOD generalization.



Motivation

▶ Current State: Extensive research has focused on OOD
generalization in vision and text domains, but limited work
exists for time series.

▶ Pre-trained Models: LLMs like GPT demonstrate strong
generalization and representation learning capabilities across
modalities, including time series.

▶ Solution: Our TTSO framework leverages LLMs and tri-level
optimization to address time series OOD generalization
challenges.



Related Work

▶ OOD Generalization: Previous work focuses on sample-level
or group-level uncertainties.

▶ LLMs in Time Series: An emerging field where LLMs show
promise in time series analysis.

▶ Contribution: TTSO uniquely integrates sample-level and
group-level uncertainties into a tri-level learning problem with
LLMs to enhance OOD generalization.
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Tri-Level Learning Framework

▶ Overview: TTSO addresses sample and group uncertainties
through tri-level optimization:

min
θ,q,δ

∑K
i=1 qiℓcon (θ, δ;DSi)

s.t. q = arg max
q′∈∆K

∑K
i=1 q′iℓcon (θ, δ;DSi)

s.t. d(p,q′) ≤ τ

δ = arg max
δ′∼p(δ′;π,µ,σ)

∑K
i=1 q′iℓalign(θ, δ

′;DSi)

s.t. ∥µ∥ ≤ C1, ∥σ∥ ≤ C2,
∑M

m=1 πm = 1, πm ≥ 0,
(1)

▶ Advantages: Tackles both sample and group uncertainties,
providing strong theoretical and practical generalization
benefits.



Stratified Localization Algorithm

▶ Step 1: Use gradient descent and Taylor approximation to
transform the tri-level problem into a single-layer optimization
problem.

▶ Step 2: Generate cutting planes to approximate the
non-convex feasible region.

▶ Step 3: Iteratively refine the solution using the cutting planes.
▶ Step 4: Update variables and add new cutting planes every k

iterations to ensure tighter approximation.
▶ Step 5: Return the optimized parameters after satisfying

convergence criteria.



Theoretical Analysis
▶ Convergence Analysis: The Stratified Localization Algorithm

(SLA) is proven to converge to an ϵ-stationary point.
▶ Iteration Complexity: The iteration complexity is given by:

T(ϵ) ∼ O
(

t1 +
L2(m(α2

1 + α2
2 + α2

3) + σ2
1 + σ2

2 + σ2
3)

2

4m2(ϵ− F(θT1 ,qT1 , δT1) + F∗)2

)
,

(2)
▶ Generalization Bound: Based on VC (Vapnik-Chervonenkis)

dimension theory, the generalization properties is given by:

ϵT(ĥ) ≤ 3ϵT (h∗T) + λ+ dH∆H (PC,PT)

+max
i,j

dH∆H(PSi ,PSj) + C(δ,m, d), (3)

where λ and C(δ,m, d) is a statistical term. dH∆H(·, ·) is a
metric function which measures differences in distribution.
ϵSi(h) and ϵT(h) is the source error and the target error.



Experiments

▶ Datasets: Experiments conducted on six real-world time
series datasets (HHAR, PAMAP, WESAD, etc.).

▶ Baselines: Compared against traditional OOD methods
(ERM, IRM, GroupDRO) and time-series-specific approaches
(AdaRNN, GILE, DIVERSIFY, DFDDG, CCDG).

▶ Results: TTSO achieves an maximum 4.9% improvement in
performance on time series classification in OOD scenarios.



Conclusion

▶ The TTSO framework integrates sample-level and group-level
uncertainties with LLMs for time series OOD generalization.

▶ TTSO demonstrates significant improvements in real-world
datasets, outperforming existing methods.

▶ Future Work: Explore the application of TTSO on other
modalities beyond time series, such as image, audio.


	Introduction
	Motivation
	Related Work
	Method
	Tri-Level Learning Framework
	Stratified Localization Algorithm

	Theoretical Analysis
	Experiments
	Conclusion

