# Tri-Level Navigator: LLM-Empowered Tri-Level Learning for Time Series OOD Generalization

Chengtao Jian, Kai Yang, Yang Jiao

School of Computer Science and Technology, Tongji University, Shanghai, China

NeurIPS 2024, October 18, 2024





## Outline

#### Introduction

Motivation

Related Work

Method Tri-Level Learning Framework Stratified Localization Algorithm

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theoretical Analysis

Experiments

Conclusion

#### Introduction

- Background: Out-of-Distribution (OOD) generalization is a key challenge in machine learning when training and test distributions differ significantly.
- Problem: Time series data present unique challenges for OOD generalization due to temporal dependencies and dynamic changes.
- Goal: We propose a novel tri-level learning framework (TTSO) based on Large Language Models (LLMs) for time series OOD generalization.

### Motivation

- Current State: Extensive research has focused on OOD generalization in vision and text domains, but limited work exists for time series.
- Pre-trained Models: LLMs like GPT demonstrate strong generalization and representation learning capabilities across modalities, including time series.
- Solution: Our TTSO framework leverages LLMs and tri-level optimization to address time series OOD generalization challenges.

# Related Work

- OOD Generalization: Previous work focuses on sample-level or group-level uncertainties.
- LLMs in Time Series: An emerging field where LLMs show promise in time series analysis.
- Contribution: TTSO uniquely integrates sample-level and group-level uncertainties into a tri-level learning problem with LLMs to enhance OOD generalization.



# Tri-Level Learning Framework

Overview: TTSO addresses sample and group uncertainties through tri-level optimization:

$$\begin{split} \min_{\boldsymbol{\theta},\boldsymbol{q},\boldsymbol{\delta}} & \sum_{i=1}^{K} q_{i}\ell_{\text{con}}\left(\boldsymbol{\theta},\boldsymbol{\delta};\mathcal{D}_{S_{i}}\right) \\ \text{s.t.} & \boldsymbol{q} = \underset{\boldsymbol{q}'\in\Delta^{K}}{\arg\max} \sum_{i=1}^{K} q'_{i}\ell_{\text{con}}\left(\boldsymbol{\theta},\boldsymbol{\delta};\mathcal{D}_{S_{i}}\right) \\ \text{s.t.} & \boldsymbol{d}(\boldsymbol{p},\boldsymbol{q}') \leq \tau \\ & \boldsymbol{\delta} = \underset{\boldsymbol{\delta}'\sim p(\boldsymbol{\delta}';\pi,\mu,\sigma)}{\arg\max} \sum_{i=1}^{K} q'_{i}\ell_{\text{align}}(\boldsymbol{\theta},\boldsymbol{\delta}';\mathcal{D}_{S_{i}}) \\ \text{s.t.} & \|\boldsymbol{\mu}\| \leq C_{1}, \|\boldsymbol{\sigma}\| \leq C_{2}, \sum_{m=1}^{M} \pi_{m} = 1, \pi_{m} \geq 0, \end{split}$$
(1)

Advantages: Tackles both sample and group uncertainties, providing strong theoretical and practical generalization benefits.

# Stratified Localization Algorithm

- Step 1: Use gradient descent and Taylor approximation to transform the tri-level problem into a single-layer optimization problem.
- Step 2: Generate cutting planes to approximate the non-convex feasible region.
- **Step 3**: Iteratively refine the solution using the cutting planes.
- Step 4: Update variables and add new cutting planes every k iterations to ensure tighter approximation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Step 5: Return the optimized parameters after satisfying convergence criteria.

#### **Theoretical Analysis**

- Convergence Analysis: The Stratified Localization Algorithm (SLA) is proven to converge to an ε-stationary point.
- Iteration Complexity: The iteration complexity is given by:

$$T(\epsilon) \sim \mathcal{O}\left(t_1 + \frac{L^2(m(\alpha_1^2 + \alpha_2^2 + \alpha_3^2) + \sigma_1^2 + \sigma_2^2 + \sigma_3^2)^2}{4m^2(\epsilon - F(\theta^{T_1}, q^{T_1}, \delta^{T_1}) + F^*)^2}\right),$$
(2)

 Generalization Bound: Based on VC (Vapnik-Chervonenkis) dimension theory, the generalization properties is given by:

$$\epsilon_{\mathcal{T}}(\hat{h}) \leq 3\epsilon_{\mathcal{T}}(h_{\mathcal{T}}^*) + \lambda + d_{\mathcal{H}\Delta\mathcal{H}}(\mathbb{P}_{\mathsf{C}}, \mathbb{P}_{\mathsf{T}}) + \max_{i,j} d_{\mathcal{H}\Delta\mathcal{H}}(\mathbb{P}_{\mathcal{S}_i}, \mathbb{P}_{\mathcal{S}_j}) + C(\delta, m, d),$$
(3)

where  $\lambda$  and  $C(\delta, m, d)$  is a statistical term.  $d_{\mathcal{H} \Delta \mathcal{H}}(\cdot, \cdot)$  is a metric function which measures differences in distribution.  $\epsilon_{S_i}(h)$  and  $\epsilon_T(h)$  is the source error and the target error.

#### Experiments

- Datasets: Experiments conducted on six real-world time series datasets (HHAR, PAMAP, WESAD, etc.).
- Baselines: Compared against traditional OOD methods (ERM, IRM, GroupDRO) and time-series-specific approaches (AdaRNN, GILE, DIVERSIFY, DFDDG, CCDG).
- Results: TTSO achieves an maximum 4.9% improvement in performance on time series classification in OOD scenarios.

# Conclusion

The TTSO framework integrates sample-level and group-level uncertainties with LLMs for time series OOD generalization.

- TTSO demonstrates significant improvements in real-world datasets, outperforming existing methods.
- Future Work: Explore the application of TTSO on other modalities beyond time series, such as image, audio.