DiffusionPID: Interpreting Diffusion via Partial Information Decomposition

NeurIPS 2024

Shaurya Dewan*, Rushikesh Zawar*, Prakanshul Saxena* Yingshan Chang, Andrew Luo, Yonatan Bisk

Carnegie Mellon University

Introduction

Rapid Advancements in Image Generation Models

Introduction

Lack of Understanding

"An apple and a sandwich"

Text Prompt

Lack of Understanding

Lack of Understanding

Shortcomings

"A dog and an elephant" (Missing Objects)

Shortcomings

"A dog and an elephant" (Missing Objects)

"Pink Clock and Brown Chair" (Attribution Binding)

Shortcomings

"A dog and an elephant" (Missing Objects)

"Pink Clock and Brown Chair" (Attribution Binding)

"Doctor" (Gender Bias)

Partial Information Decomposition (PID)

 $I(Y_1, Y_2; X) = R(Y_1, Y_2; X) + U(Y_1 \setminus Y_2; X) + U(Y_2 \setminus Y_1; X) + S(Y_1, Y_2; X)$

Partial Information Decomposition (PID)

 $I(Y_1, Y_2; X) = \mathbf{R}(\mathbf{Y_1}, \mathbf{Y_2}; \mathbf{X}) + U(Y_1 \setminus Y_2; X) + U(Y_2 \setminus Y_1; X) + S(Y_1, Y_2; X)$

 $I(Y_1, Y_2; X) = R(Y_1, Y_2; X) + \mathbf{U}(\mathbf{Y_1} \setminus \mathbf{Y_2}; \mathbf{X}) + \mathbf{U}(\mathbf{Y_2} \setminus \mathbf{Y_1}; \mathbf{X}) + S(Y_1, Y_2; X)$

Partial Information Decomposition (PID)

 $I(Y_1, Y_2; X) = R(Y_1, Y_2; X) + U(Y_1 \setminus Y_2; X) + U(Y_2 \setminus Y_1; X) + \mathbf{S}(\mathbf{Y_1}, \mathbf{Y_2}; \mathbf{X})$

He swung the bat

"Effect of Synergy"

He swung the baseball bat

"Effect of Synergy"

"Effect of Synergy"

Uniqueness and Redundancy

Gender Bias

Makeup Artist

Female Makeup Artist

Occupation	Male	Female
Surgeon	0.539	0.055
Soldier	0.250	0.136
Judge	0.304	0.286
Doctor	0.871	0.090
Plumber	0.605	0.038
Carpenter	0.365	0.093
Police Officer	0.390	0.091
Babysitter	0.240	0.531
Teacher	0.098	0.419
Average	0.286	0.194

Ethnic Bias

A black data analyst

A asian athlete

A caucasian barista

A asian airline pilot

Occupation	Black	Asian	Caucasian	Hispanic
Athlete	0.321	0.132	0.167	0.156
Artist	0.106	0.069	0.062	0.045
Engineer	0.126	0.156	0.080	0.097
Physicist	0.109	0.209	0.162	0.064
Butcher	0.110	0.179	0.474	0.396
Coach	0.118	0.107	0.433	0.128
Nurse	0.106	0.106	0.127	0.219
Agriculturist	0.046	0.117	0.337	0.450
Average	0.133	0.233	0.255	0.236

Homonyms

c = she served soup in a ceramic bowl y = 'bowl' vs 'ceramic c = the football game was held at the rose bowl stadium y = 'bowl' vs 'game'

c = he suspected his coworker might be a mole leaking information to competitors y = 'mole' vs 'coworker'

c = the mole burrowed underground searching for insects y = 'mole' vs 'searching"

Synonyms

c = the bed was covered in a soft mattress with a plush blanket y = (bed) ye (mettress)

c = the cube was a perfect cuboid with equal sides and angles y = 'cube' vs 'cuboid'

Prompt Intervention

c = a cow and a giraffe y = 'giraffe'

Applications

four teacups surounding a kettle (0.5000)

Four teacups encircle a kettle, forming a cohesive and picturesque tea setup. (1.0000)

Prompt Engineering

Model Improvement

Discussion

Future Works

- 1. PID gives a detailed breakdown about the Mutual Information between 2 concepts. This can be leveraged to better model uncertainty and can find applications in fields like Active learning.
- 2. PID can be extended to multiple modalities and other models.

Thank You