Geometry-aware training of factorized layers in tensor Tucker format

Emanuele Zangrando¹, Steffen Schotthöfer², Gianluca Ceruti³, Jonas Kusch⁴, Francesco Tudisco^{1,5}

Gran Sasso Science Institute
Oak Ridge National Laboratory
³ University of Innsbruck
⁴Norwegian University of Life Sciences
⁵ University of Edinburgh

Problem

- Train or fine-tune neural network with tensor layers (e.g. convolutions) in a low-rank memory efficient format
- train networks in a rank-adaptive fashion
- Avoid instabilities of factorized gradient descent

Original dynamics

 $W \in \mathbb{R}^{n_1 imes \cdots imes n_d}$, full-training consists in discretizing the gradient flow

 $\dot{W} = -\nabla L(W(t))$ space: $O(\prod_{i=1}^{d} n_i)$

Tucker decomposed layer:

$$W_{i_1,\ldots,i_d} = C^{j_1,\ldots,j_d} U_{j_1,i_i}^{(1)} \ldots U_{j_d,i_d}^{(d)}$$

Block-dynamics:

$$\begin{split} \dot{U}^{(i)} &= -\nabla_{U^{(i)}} L(C \times_j U^{(j)}) \\ \dot{C} &= -\nabla_C L(C \times_j U^{(j)}) \end{split}$$

Low-rank dynamics approximation $\mathcal{M}_{\rho} := \{ W \in \mathbb{R}^{n_1 \times \cdots \times n_d} | \operatorname{rank}(\operatorname{Mat}_i(W)) = r_i \}, \ \rho = (r_1, \ldots, r_d)$

$$W = -P_{T_W \mathcal{M}_\rho} \nabla L(W)$$

Best 1^{st} order local approximation of the original dynamics

$$\begin{split} \dot{U}^{(i)} &= -(I - U^{(i)} U^{(i)\top}) \operatorname{Mat}_{i}(\nabla L(W) \underset{j \neq i}{\times} U^{(j)\top}) \operatorname{Mat}_{i}(C)^{\dagger} \\ \dot{C} &= -\nabla L(W) \underset{j=1}{\overset{d}{\times}} U^{(j)\top} \end{split}$$

space:
$$O(\prod_{i=1}^d n_i r_i + \prod_{i=1}^d r_i)$$

Results

• Theoretical guarantees of approximation of the original problem and descent of the loss, together with convergence to critical points in the stochastic setting

$$\begin{split} \|W(t) - C(t) \times_{j} U_{j}(t)\| &\leq c_{1}\varepsilon + c_{2}\lambda + c_{3}\tau/\lambda \\ \liminf_{t \to \infty} \mathbb{E} \|\nabla L(W(t+1)) \times_{j} U_{j}(t)U_{j}(t)^{\top}\|^{2} &= 0 \end{split}$$

- Efficient and robust integration of the projected system to optimize the neural net (constants c_i do not depend on the singular values!)
- Variety of different experiments ranging from low-rank training from scratch to fine-tuning pretrained models

Experiments

Figure: Compressed training from scratch

< 口 > < 同 >

Experiments

Table 2: Fine-tuning performance metrics on Deberta V3 Glue benchmark (left) and on Stable diffusion Dreambooth (right).

GLUE	LoRA	TDRLT(Ours)	modb a d	less	#
# params	1.33M (rank 8)	$0.9M \ (\tau = 0.15)$	I_{0} P_{0} P_{0	0.260	# params
CoLa (Corr.)	0.6759	0.7065	LoRA (r = 6) LoRA (r = 5)	0.200	3 M
MRPC (Acc.)	0.8971	0.9052	LoRA(r=3) LoRA(r=3)	0.209	1.8 M
QQP (Acc.)	0.9131	0.9215	$\frac{1}{0} \log (\tau - 0.02)$	0.214	1.8 M
RTE (Acc.)	0.8535	0.8713	Ours $(\tau = 0.02)$	0.2055	1.5 M
SST2 (Acc.)	0.9484	0.9594	0415 (7 = 0.1)	0.212	1.0 1.1

Figure: Fine-tuning with low-rank tensor and matrix adapters

E 990

イロト イヨト イヨト イヨト

Poster

We are happy to welcome you at our poster session for further discussion

Friday 13 December, 4:30-7:30 pm local time

