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• Federated learning

- Devices directly communicate 
    with the cloud server

• Some potential problems
- Topology of practical networks, e.g., fog learning system
- Large communication latency between devices and remote server

• Hierarchical Federated Learning
- Reduce the communication frequency with the cloud server
- Group devices into multiple cells and introduce edge servers to coordinate the 

training within each cell
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Problem Formulation
• Training Objective

• denotes the global loss,         is the group loss,            represents the client loss

• HFedAvg algorithm: main procedures
1. Local model updates at devices

• Conducting SGD iterations

2. Edge server aggregates local models from clients within its coverage
• Communication period aggregation happens every H local iterations

3. Global model aggregations
• Communication period Aggregation happens every E edge aggregations

f(x) Fi(x)fj(x)
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Challenge within HFL
• Challenges

• Data heterogeneity across clients and groups

• Local models deviate from the global optimum

• Existing schemes

• No correction: converging to client-level local 
minimum as shown in fig. (a)

• Only client-group correction: converging to the 
group-level optimum as shown in fig. (b)

• Observation
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Multi-timescale gradient correction

Algorithm 1: HFL with Multi-Timescale Gradient Correction (MTGC)

Input: Initial model x̄0, global aggregation period E, group aggregation period H , learning rate �, and
group-global correction y0
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clients are not able to communicate with the central server directly, and there are multiple group
aggregation steps before the group aggregators communicate with the main server. Our idea is thus to
inject two gradient correction terms: client-group correction and group-global correction. Specifically,
the desired iteration to obtain the updated model xnew at the optimal point x⇤ can be written as
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terms, respectively. Since rf(x⇤) = 0, the two correction terms will enable the model to remain at
the optimal point. Given this intuition, the ideal local iteration at client i 2 Cj can be written as
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where t, e, and h represent global communication rounds, group communication rounds, and client
local iterations, respectively, x̄t,e
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is the averaged model across the system. Based on (4), we expect to

bring each client model closer to the global optima during local updates, as illustrated in Fig. 2(c).

Challenge encountered in HFL. However, it is important to note that the update process in (4)
still cannot be directly used in HFL. This is because client-group communication and group-global
communication do not occur at every iteration of HFL training; instead, they happen at different
timescales, and clients are not able to obtain the current group information rfj(x̄

t,e

i,h
) and global

information rf(x̄t,e

i,h
) at every local iteration. We next propose a strategy that mimics the gradient

correction described above while ensuring theoretical convergence.

3.2 Multi-Timescale Gradient Correction (MTGC)

Tackling multi-timescale model drifts. To approximate (4) during HFL training, we introduce
two control variables z and y that track/approximate rfj �rFi and rf �rfj , respectively. The
variables z and y are then employed to correct the local gradients to prevent model drifts. The
challenge here is to keep updating z and y appropriately in the multi-timescale communication
scenario, given that communications between the clients and group aggregator, and between the
group aggregators and global aggregator, are not always feasible. We propose a strategy to update
z after every H local iterations, i.e., whenever each client is able to communicate with the group
aggregator, allowing the group information to be updated and shared among the clients within the
same group. Similarly, we propose a strategy to update y after every E group aggregations, i.e.,
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• Update correction variables via accumulated gradients
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3.2 Multi-Timescale Gradient Correction (MTGC)

Tackling multi-timescale model drifts. To approximate (4) during HFL training, we introduce
two control variables z and y that track/approximate rfj �rFi and rf �rfj , respectively. The
variables z and y are then employed to correct the local gradients to prevent model drifts. The
challenge here is to keep updating z and y appropriately in the multi-timescale communication
scenario, given that communications between the clients and group aggregator, and between the
group aggregators and global aggregator, are not always feasible. We propose a strategy to update
z after every H local iterations, i.e., whenever each client is able to communicate with the group
aggregator, allowing the group information to be updated and shared among the clients within the
same group. Similarly, we propose a strategy to update y after every E group aggregations, i.e.,
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• Update correction variables via accumulated gradients
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Update after each edge aggregation

Group-global correction
Update after each global aggregation

• Update correction variables via accumulated gradients
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• The iterates generated by MTGC satisfy

      
– This convergence rate is dominated by the first term as  
– Linear speedup in the number of group aggregations E

– Linear speedup in the number of local updates H

– Linear speedup in the number of clients 

• For the first time attain these results for HFL without relying on data 
heterogeneity assumptions



• Baselines
• SCAFFOLD: with a single-level gradient correction

• FedProx: prevent local overfitting with a proximal regularizer

• FedDyn: based on a dynamic regularization term

• H-FedAvg: no gradient correction
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