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Outline

• Part I: Uniform sampling over a convex body through diffusions 

- arXiv:2405.01425 

• Part II: Warm-start generation without “TV collapse” 

- arXiv:2407.12967
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In-and-Out: Algorithmic Diffusions for Sampling Convex Bodies 
NeurIPS’24
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Uniform sampling is (maybe) all you need

Sampling from a log-concave 
dπ ∝ exp(−V) dx
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Uniform sampling from 
a convex body K

Reduction

• Main subroutine in volume computation 

• System biology 

• …



Uniform sampling in formulation

Problem. Let : convex body in  and . How many membership oracle 
queries are needed to generate a sample  whose law is -close to  in some ? 

 for some probability divergence/distance  etc.

K ℝd π = Unif(K)
X ε π D

D(law(X), π) ≤ ε D = TV, KL, χ2
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Geometric random walk

Ball walk( ) 

1. Pick  

2. Move to  if . Stay at  o.w. 

δ

z ∈ Bδ(x)

z z ∈ K x

Hit-and-Run 

1. Pick a uniform random line  through 
the current point  

2. Move to a uniform random point on 
the chord  

ℓ
x

ℓ ∩ K
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Another line of log-concave sampling research

Problem (Well-conditioned log-concave sampling).  

Let  be a smooth unconstrained distribution with  
(strong convexity and smoothness of a potential ) over .  

How many access to the first-order oracle of  are needed to generate a sample  
whose law is -close to ?

π ∝ exp(−V) αI ⪯ ∇2V ⪯ βI
V ℝd

V X
ε π
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Well-conditioned log-concave sampling

General approach for getting an implementable algorithms 

1. Understand the Langevin dynamics (SDE) with stationary : 

 

2. Discretize it in time: 

• Euler-Maruyama discretization 

• Randomized midpoint method 

• So on…

π ∝ exp(−V)

dXt = − ∇V(Xt) dt + 2 dBt
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Well-conditioned log-concave sampling

Analysis 

1. Establish the mixing of the Langevin dynamics in  (or generally Rényi) 

2. Discretization-analysis somehow preserves the mixing metric 

• Girsanov’s theorem [Dalalyan and Tsybakov’12]  

• Interpolation method [Vempala and Wibisono’19] 

• Hypercontractivity [Chewi et al.’21] 

• Shifted composition rule [Altschuler and Chewi’24]

W2, KL, χ2
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Hierarchy of probability distance/divergence

ℛ∞(μ∥π) = esssup log
dμ
dπ

ℛq(μ∥π) :=
1

q − 1
log 𝔼μ[( dμ

dπ )q−1]

ℛ2(μ∥π) = log(χ2(μ∥π) + 1)

lim
q→1

ℛq = KL

TV(μ, π) = sup
S

|μ(S) − π(S)|

W2(μ, π) = inf
Γ(μ,π)

𝔼(X,Y)∼Γ[∥X − Y∥2]

( -Rényi divergence)q

Pinsker

Talagrand
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A current state of affairs

[Constrained sampling] 

Algs 
Ball walk, Hit-and-Run 

Metrics 
TV,  

Tools 
Conductance

χ2

[Unconstrained sampling] 

Algs 
Langevin-based 

Metrics 
 

Tools 
Wasserstein calculus, optimal transport, 
Markov semigroup theory, interpolation 
method, Girsanov’s argument, Shifted 
composition rule,………..

ℛq
Fundamental gap here?
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Let’s bridge this gap

[Constrained sampling] 

Algs 
New sampler 

Metrics 
 (and  in fact) 

Tools 
Continuous interpolation via a 
forward/backward SDE

ℛq ℛ∞

Can borrow  
these techniques!

[Unconstrained sampling] 

Algs 
Langevin-based 

Metrics 
 

Tools 
Wasserstein calculus, optimal transport, 
Markov semigroup theory, interpolation 
method, Girsanov’s argument, Shifted 
composition rule,………..

ℛq
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In-and-Out

[Forward] Sample  

[Backward] Sample  

* One iteration = forward + backward step

yi+1 ∼ 𝖭(xi, hId)

xi+1 ∼ 𝖭(yi+1, hId) |K

13



In-and-Out
Input: initial point  & convex body  & threshold  & step size  
Output:  

• For  

1. Sample  

2. Sample  

[Implementation] 

-  until  

- If [# attempts ], then declare Failure

x0 ∼ π0 K ⊂ ℝd N h
xT

i = 0,...,T

yi+1 ∼ 𝖭(xi, hId) = xi + 𝖭(0,hId)

xi+1 ∼ 𝖭(yi+1, hId) |K

xi+1 ∼ 𝖭(yi+1, hId) xi+1 ∈ K

≥ N
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Where does it come from?
Connection to proximal sampler [Lee, Shen, and Tian’21] 

Goal: Sample from  over  

To this end, augment another variable  to consider 

  

Algorithm: Repeat 

1. Sample  

2. Sample 

π(x) ∝ exp(−V(x)) ℝd

y ∈ ℝd

π(x, y) ∝ exp(−V(x) −
1

2h
∥x − y∥2)

yi+1 ∼ πY|X=xi (y) = 𝖭(xi, hId)

xi+1 ∼ πX|Y=yi+1 (x) ∝ exp(−V(x) −
1
2h

∥x − y∥2)
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Where does it come from?
Connection to proximal sampler [Lee, Shen, and Tian’21] 

In-and-Out is the Proximal sampler with  

Algorithm: Repeat 

1. Sample  

2. Sample 

π(x) ∝ 1K(x)

yi+1 ∼ πY|X=xi (y) = 𝖭(xi, hId)

xi+1 ∼ πX|Y=yi+1 (x) ∝ exp(−
1

2h
∥x − y∥2) |K
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Proximal sampler in measure level
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πX

 πY

= πX * 𝖭(0,hId)

Forward 
step

Backward 
step

μX
i

μY
i+1

μX
i+1← ⋯ ←

Law of Xi

Law of Yi+1

μY
i+1← ⋯ ←



Outline of analysis

1. Contraction through one-iteration of INO (proximal sampler) 

2. Query complexity of the implementation for the backward step
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Contraction via forward/backward heat-flow
Forward / backward SDE interpretation by [Chen et al.’22] 

 
Forward step: Sample  yi+1 ∼ πY|X=xi (y) = 𝖭(xi, hId)

19

 for dZt = dBt t ∈ [0,h]Z0 ∼ law(Xi) Zh ∼ law(Yi+1)



Contraction via forward/backward heat-flow
Forward / backward SDE interpretation by [Chen et al.’22] 

Backward step: Sample  xi+1 ∼ πX|Y=yi+1 (x) ∝ exp(−V(x) −
1
2h

∥x − yi+1∥2)
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 for dZ←
t = ∇log(πXQh−t)(Z←

t ) dt + dBt t ∈ [0,h]Z←
h ∼ law(Xi+1) Z←

0 = Zh

 for dZt = dBt t ∈ [0,h]Z0 ∼ law(Xi) Zh ∼ law(Yi+1)



Q. Benefits of introducing an SDE representation? 

A1. Avoid discretization-analysis 
A2. Use tools from Markov semigroup theory
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Contraction via forward/backward heat-flow



Forward / backward SDE interpretation by [Chen et al.’22] 

Using Markov semigroup theory + Wasserstein calculus, one can show 

Forward SDE:  

 under a Poincaré inequality (PI) 

 under a log-Sobolev inequality (LSI)

dZt = dBt with Z0 ∼ μX
i ⟹ Zh ∼ μY

i+1

χ2(μY
i+1∥πY) ≤

χ2(μX
i ∥πX)

1 + h/C𝖯𝖨(πX)

KL(μY
i+1∥πY) ≤

KL(μX
i ∥πX)

1 + h/C𝖫𝖲𝖨(πX)
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Contraction via forward/backward heat-flow



Forward / backward SDE interpretation by [Chen et al.’22] 

Using Markov semigroup theory + Wasserstein calculus, one can show 

Backward SDE:  

 under a Poincaré inequality (PI) 

 under a log-Sobolev inequality (LSI)

dZ←
t = ∇log(πXQh−t)(Z←

t ) dt + dBt with Z←
0 ∼ μY

i+1 ⟹ Z←
h ∼ μX

i+1

χ2(μX
i+1∥πX) ≤

χ2(μY
i+1∥πY)

1 + h/C𝖯𝖨(πX)

KL(μX
i+1∥πX) ≤

KL(μY
i+1∥πY)

1 + h/C𝖫𝖲𝖨(πX)
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Contraction via forward/backward heat-flow



Forward / backward SDE interpretation by [Chen et al.’22] 

Composing one forward + backward contraction, 

 under a Poincaré inequality (PI) 

 under a log-Sobolev inequality (LSI) 

 
* Can still use this result, though  is not smooth around ! 

(Convolve with  & Use the lower-semi continuity of -divergence as ) 

* Can be extended to a -Rényi divergence

χ2(μX
i+1∥πX) ≤

χ2(μX
i ∥πX)

(1 + h/C𝖯𝖨(πX))2

KL(μX
i+1∥πX) ≤

KL(μX
i ∥πX)

(1 + h/C𝖫𝖲𝖨(πX))2

πK ∂K
𝖭(0,εId) f ε → 0

q
24

Contraction via forward/backward heat-flow



Functional inequalities for  

 
Poincaré inequality (PI) 

 for any smooth  

Log-Sobolev inequality (LSI) 

 for any smooth  

 
Caveat. This depends only on a measure , not on a Markov chain/kernel

π

varπ f ≤ C𝖯𝖨(π) 𝔼π[∥∇f∥2] f : ℝd → ℝ

Entπ( f2) ≤ 2C𝖫𝖲𝖨(π) 𝔼π[∥∇f∥2] f : ℝd → ℝ

π
25

Contraction via forward/backward heat-flow



Known results on log-concave distribution  over  

1.  in general 

2.  

•  

• KLS conjecture:  

•  [Klartag’23] 

3.  for a log-concave  with support of diameter 

π ∝ exp(−V) ℝd

C𝖯𝖨(π) ≤ C𝖫𝖲𝖨(π)

C𝖯𝖨(π)

∥Cov(π)∥op ≤ C𝖯𝖨(π) ≤ ψd ⋅ ∥Cov(π)∥op

ψd = Θ(1)

ψd ≲ log d

C𝖫𝖲𝖨(π) = O(D2) π D
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Contraction via forward/backward heat-flow



Relating mixing guarantees to functional inequalities 

Theorem. For  and , INO with step-size  and -warm initial 
distribution achieves  after the following # of iterations: 

 

 Substitute the known bounds on  and 

ε ∈ (0,1) K ⊂ BD(0) h M
ℛq(μn ∥ πK) ≤ ε

n ≍ min
qd2∥Cov(πK)∥op log M

ε for q ≥ 2

qd2D2 log log M
ε for q ≥ 1

( ↑ ) C𝖯𝖨, C𝖫𝖲𝖨 h ≍ d−2

27
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Control over the backward step (RGO)
Rejection sampling for the backward step  

[Implementation via rejection sampling] 

-  until  

But this is bound to fail

xi+1 ∼ 𝖭(yi+1, hId) |K

xi+1 ∼ 𝖭(yi+1, hId) xi+1 ∈ K

28



Control over the backward step (RGO)
Rejection sampling for the backward step  

Suppose we’re already at stationarity  

  

where  is a Gaussian version of local conductance [Kannan et al.’97] defined by 

 

 Simply, the success probability of the rejection sampling at 

xi+1 ∼ 𝖭(yi+1, hId) |K

πX = Unif(K)

→ πY = πX * 𝖭(0,hId) =
ℓ(y)

vol(K)

ℓ(y)

ℓ(y) =
∫

K
exp(− 1

2h ∥x − y∥2) dy

∫
ℝd exp(− 1

2h ∥x − y∥2) dy

→ y
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Control over the backward step (RGO)
Rejection sampling for the backward step  

Then the expected number of trials (until success) for one iteration is 

  

Q. Can bypass this issue?

xi+1 ∼ 𝖭(yi+1, hId) |K

𝔼πY[ 1
ℓ(y) ] = ∫ℝd

1
ℓ(y)

ℓ(y)
vol(K)

dy = ∞
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Control over the backward step (RGO)
Rejection sampling for the backward step  

Lemma.  for step-size  and . 

  is sort of “effective domain” of 

xi+1 ∼ 𝖭(yi+1, hId) |K

πY(ℝd\Kδ) ≲ exp(−Θ(t2)) h = Θ(d−2) δ = t/d

→ Kδ πY

 over πX K  over πY ℝd

-blow up of  δ K
Kδ = {x : d(x, K) ≤ δ}

Forward heat-flow δ
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Control over the backward step (RGO)
Rejection sampling for the backward step  

Insight: Ignore whatever happens outside of this effective domain 

xi+1 ∼ 𝖭(yi+1, hId) |K

Kδ

 over πX K  over πY ℝd

-blow up of  δ K
Kδ = {x : d(x, K) ≤ δ}

Forward heat-flow δ
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Control over the backward step (RGO)
Rejection sampling for the backward step  

Q. Characteristic of the complement of the effective domain ? 

Proposition. For  with  and , 

 

Expected #trials from  for the rejection sampling   

 Can ignore algorithmic behaviors from  by setting a threshold 
and considering the algorithm as having “failed” if #trials 

xi+1 ∼ 𝖭(yi+1, hId) |K

Kδ

y ∈ Kc
δ δ = t/d h ≍ d−2

ℓ(y) ≤ exp(−Ω(t2)) .

Kc
δ → ℓ(y)−1 ≥ exp(Ω(t2))

∴ Kc
δ N = Õ (exp(t2))

≥ N
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Control over the backward step (RGO)
Rejection sampling for the backward step  

Theorem. (Complexity of backward step) For failure prob.  and ,         
                there exists suitable choices of parameters  such that 

1. failure prob. of one backward-step  

2. the expected # of queries per backward-step  

 During  iterations, (1) the total failure prob. is , and  
(2) the total query complexity is 

xi+1 ∼ 𝖭(yi+1, hId) |K

δ ∈ (0,1) T ∈ ℕ
h, N

≤ δ/T

≲ M polylog(TM/δ)

∴ T ≤ δ
Õ (MT polylog(1/δ))
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Guarantee of In-and-Out
Assumption:  

1. Access to a membership oracle for a convex body  with unit ball in . 

2. An initial  is -warm w.r.t. target  

- Precisely,  a.s. 

Theorem. Given failure prob. , target acc. , and ,  
           there exists choices of parameters  such that with probability ,  

INO started at  ensures  
after  iterations, 

using  membership queries in expectation.

K ⊂ ℝd K

π0 M π = Unif(K)

dπ0/dπ ≤ M

δ ∈ (0,1) ε ∈ (0,1) q ≥ 1
h, N ≥ 1 − δ

π0 ℛq(law(Xn)∥π) ≤ ε
n = Õ (qd2∥Cov(π)∥op polylog(M/δε))

Õ (qMd2∥Cov(π)∥op polylog(1/δε))
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Matching results of Ball walk
Theorem. Given failure prob. , target acc. , and , there 
exists choices of parameters  such that with probability ,  

INO started at  ensures  
by using  membership queries in expectation. 

Previous best complexity via Ball walk: 
 Achieving -TV distance from -warm start needs  queries. 

 
INO recovers the matching result under stronger performance metrics and principled approaches!

δ ∈ (0,1) ε ∈ (0,1) q ≥ 1
h, N ≥ 1 − δ

π0 ℛq(law(Xn)∥π) ≤ ε
Õ (qMd2∥Cov(π)∥op polylog(1/δε))

→ ε M O(Md2∥Cov(π)∥op polylog(1/δε))
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Chicken-and-egg problem
Awkward situation… 

INO needs  queries where  

Observation 

Needs -warmness to get -result (denote INO: ). 
Same issue with BW (SW + rejection): . 

Q. How to get a warm-start in ?

Õ (qMd2∥Cov(π)∥op polylog
1
δε ) M = exp(ℛ∞(π0∥π))

ℛ∞ ℛq ℛ∞ → ℛq
ℛ∞ → TV

ℛ∞
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Part II - Collaborators

Matthew Zhang 
University of Toronto

Rényi-infinity constrained sampling with  membership queries 
SODA’25

d3
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Warm-start generation

Problem. Let  be a “well-rounded” convex body (i.e., ) 
containing a unit ball. Can we generate a warm start  such that 

? 

Note) There is a known method for making  well-rounded [Jia et al.’21]

K ⊂ ℝd 𝔼π[∥X∥2] = O(d)
X

ℛ∞(law(X) ∥ π) = O(1)

K
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Previous approaches

A common approach is “annealing”: 

 

• : easy dist. (from which we can easily sample) 

• Generate  starting from  (by some samplers) 

• Here,  is a warm start for  (i.e.,  and  are already close)

μ0 → μ1 → ⋯ → μi → μi+1 → ⋯ → μk → π

μ0

μi+1 μi

μi μi+1 μi μi+1
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Previous approaches

1. Uniform annealing [Dyer-Frieze-Kannan’89  Kannan-Lovász-Simonovits’97] 

 

2. Exponential annealing [Lovász and Vempala’06] 

 

3. Gaussian annealing [Cousin and Vempala’18] 

∼

μi = K ∩ (2i/d B1(0))

μi ∝ exp(−a⊤
i x) |K

μi ∝ exp(−
1

2σ2
i

∥x∥2) |K ℛ∞(μi ∥ μi+1) = O(1)

ℛ∞(μi ∥ μi+1) = O(1)

ℛ2(μi ∥ μi+1) = O(1)

Recall ℛ2 = log(χ2 + 1)
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Previous approaches

• Previous works rely on Hit-and-Run or [Speedy walk + rejection sampling] for 
sampling the annealing distribution  . 

However, HAR or SW has guarantees in  or .

μi

χ2 TV
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Previous approaches

MCMC Sampler started at  will output  with  

In the next phase, an initial dist. is in fact , not . 

No triangle inequality coupling  and 

μ0 X ∼ μ0P TV(μ0P1, μ1) ≤ ε

μ0P1 μ1

TV ℛ∞

μ0

μ1

μ0P1

Real

TV or χ2

μ2

ℛ∞

??

ℛ∞

Inte
nde

d

: Markov kernel of the MCMC samplerP1
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Previous approaches

However, the annealing algorithm still proceeds as if the starting distribution is  

Previous works use a coupling argument for analysis, reducing everything to TV.

μ1

μ0

μ1

Real

TV or χ2

μ2

ℛ∞

??

ℛ∞

Inte
nde

d

μ0P1
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Previous approaches

• Due to inexact error from Markov chains, any guarantee is eventually collapsed to TV 

- Previous approaches cannot avoid this “TV-collapse” issue 

• If INO uses a warm start generated by this annealing scheme, then its final guarantee 
ends up collapsing to TV as well

45



Relay -guarantees across annealing?ℛ∞

μ0

μ1

Real

Guarantee in ℛ∞

μ2

ℛ∞

ℛ∞

Inte
nde

d

μ0P1

If a sampler has a -guarantee,  
then can relay -guarantees through the triangle inequality

ℛ∞
ℛ∞

-guarantee 
via 

triangle ineq.

ℛ∞
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 is difficultℛ∞

• Prior sampling -guarantees involve a complexity at least linear in  

- Useless for  

• A Markov-semigroup approach used for  doesn’t go through for  

In this work, we boost  without overhead 
via a log-Sobolev inequality (LSI)

ℛq q

ℛ∞

ℛq ℛ∞

TV → ℛ∞

47



Revisit the theory of Markov semigroups

• Let  be a Markov kernel. Then, 

 

• Convergence rate is characterized by the contractivity of a Markov kernel: 

 

where .

P : Ω × ℱ → [0,1]

μP( ⋅ ):= ∫Ω
P( ⋅ | x) μ(dx)

Pf(x):= ∫Ω
f(y) P(dy | x)

∥P∥Lp→Lp := sup
0≠f∈Lp

0

∥Pf∥Lp

∥f∥Lp

Lp
0 := {f : 𝔼π[ | f |p ] < ∞, 𝔼π f = 0}
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Revisit the theory of Markov semigroups

The most classical setting is the “  contraction” 

If , then the so-called spectral gap of  is  

Q. What about contraction in ? 
(recall )

L2(π) → L2(π)

γ := ∥P∥L2→L2 P 1 − γ

L∞ → L∞

∥f∥L∞ := inf {C : | f | ≤ C} = esssup | f |

49



Revisit the theory of Markov semigroups

Q. What about contraction in ? 

Theorem [Rudolf’11]. Let  be a Markov kernel reversible w.r.t. stationary . Then, 

 

where  is the operator defined by .

L∞ → L∞

P π

∥Pn − 1π∥L∞→L∞ = 2 esssupx TV(δxPn, π)

1π 1π( f ) := 𝔼π f

50



Convergence from any start implies -contractionL∞

By substituting , one can deduce 

 

 Uniform TV-bound over any start     -bound

f =
dμ
dπ

− 1

ℛ∞(μPn ∥ π) ≤
d(μPn)

dπ
− 1

L∞
≤

dμ
dπ

− 1
L∞

⋅ 2 esssupx TV(δxPn, π)

∴ x ∈ Ω ⟹ ℛ∞

log(1 + x) ≤ x
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Functional inequalities for boosting

Q. When can we bound  without huge overhead? 

 (PI) ensures an exponential contraction in  such as  

 

 (LSI) ensures an exponential contraction in  such as  

sup
x∈Ω

TV(δxPn, π)

→ χ2

χ2(δxPn ∥ π) ≲ exp(−
n

C𝖯𝖨(π) ) χ2(δxP1 ∥ π)

→ KL

KL(δxPn ∥ π) ≲ exp(−
n

C𝖫𝖲𝖨(π) ) KL(δxP1 ∥ π)
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Functional inequalities for boosting

Q. When can we bound  without huge overhead? 

Recall . In general,  

 

Under (PI), the convergence rate would have the overhead of  
Under (LSI), the convergence rate would have the overhead of  

LSI can provide -guarantee only with polylog overhead!

sup
x∈Ω

TV(δxPn, π)

2 TV2 ≤ KL ≤ log(1 + χ2) ≤ χ2

KL(δxP ∥ π) = poly(d)
χ2(δxP ∥ π) = exp(poly(d))

log χ2
0 = poly(d)

log KL0 = polylog(d)

ℛ∞
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Annealing through Gaussians

Work with the Gaussian cooling [Cousin and Vempala’18]: 

   with    and   

 Need a sampler for a truncated Gaussian 

Proximal sampler once again! 

μ0 → ⋯ → μi → μi+1 → ⋯ → μk → π μi = 𝖭(0,σ2
i Id) |K π = Unif(K)

→
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Sampling from a truncated Gaussian

Proximal sampler for a truncated Gaussian 

  with  

Algorithm: Repeat 

1. Sample  

2. Sample  

 
Q. What’s (1) the convergence rate and (2) query complexity of the backward step?

π(x, y) ∝ exp(−V(x) −
1
2h

∥x − y∥2) V(x) =
1

2σ2
∥x∥2 ⋅ 1K(x)

yi+1 ∼ πY|X=xi(y) = 𝖭(xi, hId)

xi+1 ∼ πX|Y=yi+1(x) ∝ exp(−V(x) −
1
2h

∥x − y∥2) = 𝖭( 1
1 + hσ−2

yi+1,
h

1 + hσ−2
Id)

K
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Uniform ergodicity of proximal sampler

Theorem. Under suitable choices of parameters, for any , 

 for  

after  iterations. 

Fact 1 [Bakry-Émery].  
Fact 2 [Bakry-Gentil-Ledoux]. Convex truncation doesn’t increase  

 

x ∈ K

ℛq(δxPn ∥ π) ≤ ε π = 𝖭(0,σ2Id) |K

n = Õ (qd2C𝖫𝖲𝖨(π) log
poly(d, D)

ε )

C𝖫𝖲𝖨(𝖭(μ, σ2Id)) ≤ σ2

C𝖫𝖲𝖨

∴ C𝖫𝖲𝖨(π) ≤ σ2
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Uniform ergodicity of proximal sampler

Theorem. Under suitable choices of parameters, for any , 

 for  

after  iterations. 

 
Boost from TV (from any start)   

 for 

x ∈ K

TV(δxPn, π) ≤ ε π = 𝖭(0,σ2Id) |K

n = Õ (d2σ2 log
poly(d, D)

ε )

→ ℛ∞

ℛ∞(μPn ∥ π) ≤ ε π = 𝖭(0,σ2Id) |K
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Query complexity of proximal sampler

Use a rejection sampling to implement the backward-step 

Theorem. [Complexity] For a well-rdd convex , failure prob. , target acc. ,    
                                parameters  such that with probability , 

the Proximal sampler with -warm start ensures  

by using  membership queries in expectation. 

K δ ∈ (0,1) ε ∈ (0,1)
∃ h, N ≥ 1 − δ

M ℛ∞(law(Xn)∥π) ≤ ε
Õ (Md2σ2 polylog

D
δε )
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Annealing through Gaussians

Employ the proximal sampler within the Gaussian cooling [Cousin and Vempala’18]: 

   with    and   

Set , and update according to  

 

μ0 → ⋯ → μi → μi+1 → ⋯ → μk → π μi = 𝖭(0,σ2
i Id) |K π = Unif(K)

σ2
0 = 1/d

σ2
i+1 ←

σ2
i (1 + 1

d ) if d−1 ≤ σ2
i ≤ 1

σ2
i (1 +

σ2
i

d ) if 1 ≤ σ2
i ≲ d
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Annealing through Gaussians

 

Query complexity of Gaussian sampling from an -warm start:  

1. During , needs  phases for doubling of    # queries :  

2. During , needs  phases for doubling         # queries :  

 Total query complexity through annealing: 

σ2
i+1 ←

σ2
i (1 + 1

d ) if d−1 ≤ σ2
i ≤ 1

σ2
i (1 +

σ2
i

d ) if 1 ≤ σ2
i ≲ d

O(1) d2σ2

d−1 ≤ σ2
i ≤ 1 Õ (d) σ2

i → d ⋅ d2σ2 ≤ d3

1 ≤ σ2
i ≲ d Õ (d/σ2

i ) → d/σ2 ⋅ d2σ2 ≤ d3

∴ d3
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Wrap-up in the last phase

Wrap-up for uniform sampling in the last phase 

        

Use the boosting for uniform sampling via LSI 

 INO (or proximal sampler)’s complexity:  in the last phase 

μk = 𝖭(0, dId) |K → π = Unif(K)

→ Õ (d2C𝖫𝖲𝖨) = Õ (d2D2)
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Wrap-up in the last phase

Wrap-up for uniform sampling in the last phase 

        

 
Better way? 

Can work with the uniform dist.  over a truncated body  due to  

Rationale: A log-concave dist. has a sub-exponential tail  

 when 

μk = 𝖭(0, dId) |K → π = Unif(K)

̂π K ∩ BO(d1/2)(0) ℛ∞( ̂π ∥ π) = O(1)

Pπ(∥X − μ∥ ≥ t d) ≤ exp(−t + 1) 𝔼π[∥X∥2] = O(d)
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Wrap-up in the last phase

Wrap-up for uniform sampling in the last phase 

        

 
After truncation by : 

 so  

 INO’s complexity is  for uniform sampling in the last phase

μk = 𝖭(0, dId) |K → π = Unif(K)

BO(d1/2)(0)

D = O(d1/2) C𝖫𝖲𝖨( ̂π) = O(D2) = O(d)

∴ d3
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Putting together

1. Annealing through Gaussian 

 queries 

2. Uniform sampling in the last phase 

 queries 

  membership queries for uniform sampling with -guarantee 

 Matches the prior best known complexity in  [Cousin and Vempala’18]

Õ (d3 polylog
D
δ )

Õ (d3 polylog
D
δε )

∴ Õ (d3 polylog
D
δε ) ℛ∞

→ TV
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