Yunbum Kook Georgia Tech CS

Oct 4, 2024 University of Toronto, TCS seminar

Rényi-infinity Uniform Sampling via Algorithmic Diffusion

Outline

• **Part I**: Uniform sampling over a convex body through diffusions - arXiv:2405.01425

• **Part II**: Warm-start generation without "TV collapse"

- arXiv:2407.12967

Part I - Collaborators

Santosh Vempala Georgia Tech

Matthew Zhang University of Toronto

In-and-Out: Algorithmic Diffusions for Sampling Convex Bodies NeurIPS'24

Uniform sampling is (maybe) all you need

Sampling from a log-concave $d\pi \propto \exp(-V) dx$

- Main subroutine in volume computation
- System biology

Uniform sampling from a convex body *K*

• …

Uniform sampling in formulation

Problem. Let *K*: convex body in \mathbb{R}^d and $\pi = \text{Unif}(K)$. How many membership oracle α queries are needed to generate a sample X whose law is ε -close to π in some D ?

 $D(\textsf{law}(X),\pi) \leq \varepsilon$ for some probability divergence/distance $D=\textsf{TV}$, KL, χ^2 etc.

Geometric random walk

Ball walk (δ)

- 1. Pick $z \in B_{\delta}(x)$
- 2. Move to z if $z \in K$. Stay at x o.w.

Hit-and-Run

- 1. Pick a uniform random line ℓ through the current point *x*
- 2. Move to a uniform random point on the chord $\mathscr{C} \cap K$

Another line of log-concave sampling research

Problem (Well-conditioned log-concave sampling).

(strong convexity and smoothness of a potential V) over \mathbb{R}^d .

How many access to the <u>first-order oracle</u> of V are needed to generate a sample X whose law is ε -close to π ?

- Let $\pi \propto \exp(-V)$ be a smooth unconstrained distribution with $\alpha I \leq \nabla^2 V \leq \beta I$
	-

Well-conditioned log-concave sampling

- **General approach for getting an implementable algorithms** 1. Understand the Langevin dynamics (SDE) with stationary $\pi \propto \exp(-V)$: $dX_t = -\nabla V(X_t) dt + \sqrt{2} dB_t$
- 2. Discretize it in time:
	- Euler-Maruyama discretization
	- Randomized midpoint method
	- So on…

Well-conditioned log-concave sampling

Analysis

- 1. Establish the mixing of the Langevin dynamics in W_2 , KL, χ^2 (or generally Rényi) W_2 , KL, χ^2
- 2. Discretization-analysis somehow preserves the mixing metric
	- Girsanov's theorem [Dalalyan and Tsybakov'12]
	- Interpolation method [Vempala and Wibisono'19]
	- Hypercontractivity [Chewi et al.'21]
	- Shifted composition rule [Altschuler and Chewi'24]

Hierarchy of probability distance/divergence

 $W^2(\mu, \pi) = \inf$ $\inf_{\Gamma(\mu,\pi)}$ $\mathbb{E}_{(X,Y)\sim\Gamma}[\|X-Y\|^2]$]

$$
\sum_{s} TV(\mu, \pi) = \sup_{S} |\mu(S) - \pi(S)|
$$

] (*q*-Rényi divergence)

10

A current state of affairs

Algs Ball walk, Hit-and-Run **Metrics** $\textsf{TV}, \, \chi^2$ Tools **Conductance**

[Constrained sampling]

[Unconstrained sampling] Algs Langevin-based **Metrics** Tools \mathscr{R}_q

Wasserstein calculus, optimal transport, Markov semigroup theory, interpolation method, Girsanov's argument, Shifted composition rule,………..

Fundamental gap here?

Let's bridge this gap

Algs *New sampler* **Metrics**

[Constrained sampling]

Tools

Algs Langevin-based **Metrics**

$$
\mathcal{R}_q
$$
 (and \mathcal{R}_{∞} in fact)

Tools \mathscr{R}_{q}

Continuous interpolation via a forward/backward SDE

Can borrow these techniques!

[Unconstrained sampling]

Wasserstein calculus, optimal transport, Markov semigroup theory, interpolation method, Girsanov's argument, Shifted composition rule,………..

In-and-Out

In-and-Out

 $[Forward]$ Sample $y_{i+1} \sim N(x_i, hI_d)$ $\left[\text{Backward}\right]$ Sample $x_{i+1} \sim N(y_{i+1}, hI_d) \big|_K$

 $*$ One iteration $=$ forward $+$ backward step

In-and-Out

 I nput: initial point $x_0 \thicksim \pi_0$ $\&$ convex body $K \subset \mathbb{R}^d$ $\&$ threshold N $\&$ step size h **Output:** x_T

• For
$$
i = 0, \ldots, T
$$

- 1. Sample $y_{i+1} \sim N(x_i, hI_d) = x_i + N(0, hI_d)$
- 2. Sample $x_{i+1} \sim N(y_{i+1}, hI_d)|_K$

[Implementation]

 $-x_{i+1} \sim N(y_{i+1}, hI_d)$ until $x_{i+1} \in K$

 $-$ If $[\#$ attempts $\geq N]$, then declare Failure

1. Sample $y_{i+1} \sim \pi^{Y|X=x_i}(y) = N(x_i, hI_d)$

2. Sample $x_{i+1} \sim \pi^{X|Y=y_{i+1}}(x) \propto \exp\left(-V(x) - \frac{1}{2\pi}\right)$

-
-

Where does it come from? Connection to proximal sampler [Lee, Shen, and Tian'21] Goal: Sample from $\pi(x) \propto \exp(-V(x))$ over \mathbb{R}^d To this end, augment another variable $y \in \mathbb{R}^d$ to consider $\pi(x, y) \propto \exp(-y)$

Algorithm: Repeat

$$
-V(x) - \frac{1}{2h} ||x - y||^2
$$

$$
V(x) - \frac{1}{2h} ||x - y||^2
$$

Where does it come from?

Connection to proximal sampler [Lee, Shen, and Tian'21]

- 1. Sample $y_{i+1} \sim \pi^{Y|X=x_i}(y) = N(x_i, hI_d)$
- 2. Sample *x*_{*i*+1} ∼ $π^{X|Y=y_{i+1}}(x) \propto exp(-\frac{1}{2^{n}})$

In-and-Out is the Proximal sampler with $\pi(x) \propto 1_K(x)$

Algorithm: Repeat

$$
\frac{1}{2h}||x-y||^2\big)\big|_K
$$

Proximal sampler in measure level

17

Outline of analysis

- **1. Contraction** through one-iteration of INO (proximal sampler)
- **2. Query complexity** of the implementation for the backward step

Contraction via forward/backward heat-flow

Forward / backward SDE interpretation by [Chen et al.'22]

Forward step: Sample $y_{i+1} \sim \pi^{Y|X=x_i}(y) = N(x_i, hI_d)$

$$
Z_0 \sim \text{law}(X_i) \qquad \text{where} \quad dZ_t = d
$$

Contraction via forward/backward heat-flow

Forward / backward SDE interpretation by [Chen et al.'22]

Backward step: Sample $x_{i+1} \sim \pi^{X|Y=y_{i+1}}$ (*x*

$$
x) \propto \exp(-V(x) - \frac{1}{2h} ||x - y_{i+1}||^2)
$$

$$
Z_0 \sim \text{law}(X_i) \qquad \text{and} \qquad \text{d}Z_t = \text{d}B_t \text{ for } t \in [0,h] \qquad \text{and} \qquad Z_h \sim \text{law}(Y_{i+1})
$$
\n
$$
Z_h^{\leftarrow} \sim \text{law}(X_{i+1}) \qquad \text{d}Z_t^{\leftarrow} = \nabla \log(\pi^X Q_{h-t})(Z_t^{\leftarrow}) \text{ d}t + \text{d}B_t \text{ for } t \in [0,h] \qquad \text{and} \qquad Z_0^{\leftarrow} = Z_h
$$

$$
Z_0 \sim \text{law}(X_i) \qquad \text{where} \quad dZ_t = dB_t \text{ for } t \in [0,h] \qquad Z_h \sim \text{law}(Y_{i+1})
$$
\n
$$
dZ_t^{\leftarrow} = \nabla \log(\pi^X Q_{h-t})(Z_t^{\leftarrow}) dt + dB_t \text{ for } t \in [0,h] \qquad Z_0^{\leftarrow} = Z_h
$$

Q. Benefits of introducing an SDE representation?

A1. Avoid discretization-analysis **A2.** Use tools from Markov semigroup theory

21

Contraction via forward/backward heat-flow

under a log-Sobolev inequality (LSI)

Forward / backward SDE interpretation by [Chen et al.'22] Using Markov semigroup theory + Wasserstein calculus, one can show Forward SDE: $dZ_t = dB_t$ with $Z_0 \sim \mu_i^X \implies Z_h \sim \mu_{i+1}^Y$ **Contraction via forward/backward heat-flow**

$$
\chi^{2}(\mu_{i+1}^{Y}||\pi^{Y}) \leq \frac{\chi^{2}(\mu_{i}^{X}||\pi^{X})}{1 + h/C_{\text{PI}}(\pi^{X})}
$$

$$
\text{KL}(\mu_{i+1}^{Y}||\pi^{Y}) \leq \frac{\text{KL}(\mu_{i}^{X}||\pi^{X})}{1 + h/C_{\text{LSI}}(\pi^{X})}
$$

 \overline{K} under a Poincaré inequality (PI)

22

under a log-Sobolev inequality (LSI)

Forward / backward SDE interpretation by [Chen et al.'22] Using Markov semigroup theory $+$ Wasserstein calculus, one can show Backward SDE: $dZ_t^{\leftarrow} = \nabla \log(\pi^X Q_{h-t})(Z_t^{\leftarrow})$ **Contraction via forward/backward heat-flow**

$$
H_t^{\leftarrow}(t) dt + dB_t \text{ with } Z_0^{\leftarrow} \sim \mu_{i+1}^Y \longrightarrow Z_h^{\leftarrow} \sim \mu_{i+1}^X
$$

 $\frac{1}{x}$ under a Poincaré inequality (PI)

$$
\chi^2(\mu_{i+1}^X || \pi^X) \le \frac{\chi^2(\mu_{i+1}^Y || \pi^Y)}{1 + h/C_{\text{PI}}(\pi^X)}
$$

KL $(\mu_{i+1}^X || \pi^X) \le \frac{KL(\mu_{i+1}^Y || \pi^Y)}{1 + h/C_{\text{LSI}}(\pi^X)}$

Forward / backward SDE interpretation by [Chen et al.'22]

Composing one forward $+$ backward contraction,

 under a Poincaré inequality (PI) 2

 under a log-Sobolev inequality (LSI) 2

* Can still use this result, though π_K is not smooth around $\partial K!$ (Convolve with $N(0, \varepsilon I_d)$ & Use the lower-semi continuity of f-divergence as $\varepsilon \to 0$)

$$
\chi^{2}(\mu_{i+1}^{X}||\pi^{X}) \le \frac{\chi^{2}(\mu_{i}^{X}||\pi^{X})}{\left(1 + h/C_{\text{PI}}(\pi^{X})\right)}
$$

$$
\text{KL}(\mu_{i+1}^{X}||\pi^{X}) \le \frac{\text{KL}(\mu_{i}^{X}||\pi^{X})}{\left(1 + h/C_{\text{LSI}}(\pi^{X})\right)^{2}}
$$

* Can be extended to a q-Rényi divergence

-
-

Contraction via forward/backward heat-flow

Log-Sobolev inequality (LSI) $\mathsf{Ent}_{\pi}(f^2) \leq 2C_{\mathsf{LSI}}(\pi) \mathbb{E}_{\pi}[\|\nabla f\|^2]$ for any smooth $f: \mathbb{R}^d \to \mathbb{R}$

Caveat. This depends only on a measure π , not on a Markov chain/kernel

for any smooth. $\text{var}_{\pi} f \leq C_{\text{PI}}(\pi) \, \mathbb{E}_{\pi} [\|\nabla f\|^2]$ for any smooth $f \colon \mathbb{R}^d \to \mathbb{R}^d$

Poincaré inequality (PI)

Functional inequalities for *π*

Contraction via forward/backward heat-flow

Contraction via forward/backward heat-flow

Known results on log-concave distribution $\pi \propto \exp(-V)$ over \mathbb{R}^d

- 1. $C_{PI}(\pi) \leq C_{LSI}(\pi)$ in general
- 2. $C_{\text{PI}}(\pi)$
	- $\|Cov(\pi)\|_{\text{op}} \leq C_{\text{PI}}(\pi) \leq \psi_d \cdot \|\text{Cov}(\pi)\|_{\text{op}}$
	- KLS conjecture: $\psi_d = \Theta(1)$
	- $\psi_d \lesssim \log d$ [Klartag'23]

3. $C_{\textsf{LSI}}(\pi) = O(D^2)$ for a log-concave π with support of diameter D

Relating mixing guarantees to functional inequalities

Theorem. For $\varepsilon \in (0,1)$ and $K \subset B_D(0)$, INO with step-size h and M-warm initial σ_{q} distribution achieves $\mathscr{R}_{q}(\mu_{n}\,\|\,\pi_{K})\leq\varepsilon$ after the following $\#$ of iterations:

$$
n \asymp \min \begin{cases} q d^2 ||\text{Cov}(\pi_K)||_{\text{op}} \log \frac{M}{\varepsilon} & \text{for } q \ge 2\\ q d^2 D^2 \log \frac{\log M}{\varepsilon} & \text{for } q \ge 1 \end{cases}
$$

(\uparrow) Substitute the known bounds on C_{PI} , C_{LSI} and $h \asymp d^{-2}$

27

Contraction via forward/backward heat-flow

Rejection sampling for the backward step $x_{i+1} \sim N(y_{i+1}, hI_d)|_K$

[Implementation via rejection sampling]

 $-x_{i+1} \sim N(y_{i+1}, hI_d)$ until $x_{i+1} \in K$

But this is bound to fail

Rejection sampling for the backward step $x_{i+1} \sim N(y_{i+1}, hI_d)|_K$

Suppose we're already at stationarity $\pi^X = \mathsf{Unif}(K)$

 $\rightarrow \pi^Y = \pi^X$

$$
* N(0, hI_d) = \frac{\ell(y)}{\text{vol}(K)}
$$

where $\ell'(y)$ is a Gaussian version of local conductance [Kannan et al.'97] defined by $\ell'(y)$

 \rightarrow Simply, the success probability of the rejection sampling at y

-
-

$$
\int_{K} \exp\left(-\frac{1}{2h}||x-y||^{2}\right) dy
$$

$$
\int_{\mathbb{R}^{d}} \exp\left(-\frac{1}{2h}||x-y||^{2}\right) dy
$$

Rejection sampling for the backward

Then the expected number of trials (until success) for one iteration is

Q. Can bypass this issue?

$$
\text{step } x_{i+1} \sim \mathsf{N}(y_{i+1}, hI_d) \big|_K
$$

$$
\mathbb{E}_{\pi^Y}\left[\frac{1}{\ell(y)}\right] = \int_{\mathbb{R}^d} \frac{1}{\ell(y)} \frac{\ell(y)}{\text{vol}(K)} dy = \infty
$$

Rejection sampling for the backward step $x_{i+1} \sim N(y_{i+1}, hI_d)|_K$

Lemma. $\pi^{Y}(\mathbb{R}^{d} \setminus K_{\delta}) \lesssim \exp(-\Theta(t^{2}))$ for step-size $h = \Theta(d^{-2})$ and $\delta = t/d$.

 is sort of "effective domain" of \rightarrow K_{δ} is sort of "effective domain" of π^{Y}

31

 $\boldsymbol{\mathsf{Insight}}$: Ignore whatever happens outside of this effective domain K_δ

32

Rejection sampling for the backward step $x_{i+1} \sim N(y_{i+1}, hI_d)|_K$

Proposition. For $y \in K_{\delta}^c$ with $\delta = t/d$ and $h \asymp d^{-2}$,

-
- **Q**. **Characteristic** of the complement of the effective domain K_{δ} ?
	-
	- $\ell(y) \leq \exp(-\Omega(t))$ 2)) .

- Expected #trials from K_{δ}^{c} for the rejection sampling δ^c for the rejection sampling $\rightarrow \ell(y)$ $-1 \ge \exp(\Omega(t^2))$))
- \therefore Can ignore algorithmic behaviors from K_{δ}^{c} by setting a threshold δ and considering the algorithm as having "failed" if $\#$ trials $\geq N$ δ ^{*c*} by setting a threshold $N=$ \widetilde{O} *O*(exp(*t* 2))

- **Rejection sampling for the backward**
- there exists suitable choices of parameters h, N such that
	- 1. failure prob. of one backward-step $\leq \delta/T$
	- 2. the expected $\#$ of queries per backward-step $\leq M$ polylog(TM/δ)

 \therefore During T iterations, (1) the total failure prob. is $\leq \delta$, and \widetilde{O} *O*(*MT* polylog(1/*δ*))

(2) the total query complexity is

$$
\text{step } x_{i+1} \sim \mathsf{N}(y_{i+1}, hI_d) \big|_K
$$

Theorem. (Complexity of backward step) For failure prob. $\delta \in (0,1)$ and $T \in \mathbb{N}$,

Guarantee of In-and-Out

Assumption:

-
- 2. An initial π_0 is M-warm w.r.t. target $\pi = \text{Unif}(K)$ $-$ Precisely, $d\pi_0/d\pi \leq M$ a.s.

Theorem. Given failure prob. $\delta \in (0,1)$, target acc. $\varepsilon \in (0,1)$, and $q \ge 1$, there exists choices of parameters h, N such that with probability $\geq 1 - \delta$,

INO started at π_0 ensures $n =$ \widetilde{O} $\overline{O}(ad^2 || \text{Cov}(\pi) ||_{op}$ polylog($M/\delta \varepsilon$))
 $\overline{O}(aMd^2 || \text{Cov}(\pi) ||_{op}$ polylog($1/\delta \varepsilon$)) membership

1. Access to a membership oracle for a convex body $K \subset \mathbb{R}^d$ with unit ball in K .

after $n = O\left(qd^2\|\text{Cov}(\pi)\|_{\text{op}}\text{polylog}(M/\delta \varepsilon)\right)$ iterations, σ using $\widetilde{O}(qMd^2\|Cov(\pi)\|_{\text{op}}$ polylog $(1/\delta\varepsilon))$ membership queries in expectation. π_0 ensures \mathscr{R}_q (law (X_n) || π) $\leq \varepsilon$

Matching results of Ball walk

exists choices of parameters h, N such that with probability $\geq 1-\delta,$

INO started at π_0 ensures \widetilde{O} $O(qMd^2 || Cov(\pi) ||_{op}$ polylog($1/\delta \varepsilon)$)

- \to Achieving ε -TV distance from M -warm start needs $O\bigl(M d^2 \| \mathsf{Cov}(\pi) \|_{\textsf{op}}$ polylog $(1/\delta \varepsilon)\bigr)$ queries.
- INO recovers the matching result under stronger performance metrics and principled approaches!

Previous best complexity via **Ball walk**:

- **Theorem.** Given failure prob. $\delta \in (0,1)$, target acc. $\varepsilon \in (0,1)$, and $q \ge 1$, there
	- by using $O\left(qMd^2\right|\right|\text{Cov}(\pi)\right|_{\text{op}}$ polylog $(1/\delta\varepsilon)$) membership queries in expectation. π_0 ensures \mathscr{R}_q (law (X_n) || $\pi) \leq \varepsilon$

Chicken-and-egg problem

Awkward situation…

INO needs $O(qMd^2||Cov(\pi)||_{op}$ polylog \rightarrow queries where \widetilde{O} $O(qMd^2$ ||Cov(π)||_{Op} polylog

Observation

1 $\overline{\delta \varepsilon}$) queries where $M = \exp(\mathscr{R}_{\infty}(\pi_0||\pi))$

Needs \mathscr{R}_{∞} -warmness to get \mathscr{R}_{q} -result (denote INO: $\mathscr{R}_{\infty} \to \mathscr{R}_{q}$). Same issue with BW (SW + rejection): $\mathscr{R}_{\infty} \to \textsf{TV}$.

Q. How to get a warm-start in \mathcal{R}_{∞} ?

Part II - Collaborators

Matthew Zhang University of Toronto

Rényi-infinity constrained sampling with d^3 membership queries SODA'25

Warm-start generation

Problem. Let $K \subset \mathbb{R}^d$ be a "well-rounded" convex body (i.e., $\mathbb{E}_{\pi}[\|X\|^2] = O(d)$) containing a unit ball. Can we generate a warm start X such that

 $\mathscr{R}_{\infty}(\mathsf{law}(X) \mid \pi) = O(1)$?

Note) There is a known method for making K well-rounded [Jia et al.'21]

$]=O(d)$

A common approach is "**annealing**":

$$
\mu_0 \to \mu_1 \to \cdots \to \mu
$$

- \bullet μ_0 : easy dist. (from which we can easily sample)
- Generate μ_{i+1} starting from μ_i (by some samplers)
- Here, μ_i is a warm start for μ_{i+1} (i.e., μ_i and μ_{i+1} are already close)

$\mu_i \rightarrow \mu_{i+1} \rightarrow \cdots \rightarrow \mu_k \rightarrow \pi$

- 1. Uniform annealing [Dyer-Frieze-Kannan'89 ∼ Kannan-Lovász-Simonovits'97] $\mu_i = K \cap (2^{i/d} B_1(0))$ $\mathscr{R}_{\infty}(\mu_i || \mu_{i+1}) = O(1)$
- 2. Exponential annealing [Lovász and Vempala'06] $\mu_i \propto \exp(-a_i^{\top} x) \big|_K$
- 3. Gaussian annealing [Cousin and Vempala'18]
	- $\mu_i \propto \exp\left(-\frac{1}{2\pi}\right)$ $2\sigma_i^2$ *i* $||x||^2$

Recall $\mathcal{R}_2 = \log(\chi^2 + 1)$

 $\mathscr{R}_2(\mu_i || \mu_{i+1}) = O(1)$

 $\mathscr{R}_{\infty}(\mu_i || \mu_{i+1}) = O(1)$

41

sampling the annealing distribution μ_i .

However, HAR or SW has guarantees in χ^2 or TV.

• Previous works rely on Hit-and-Run or [Speedy walk + rejection sampling] for

42

*P*₁: Markov kernel of the MCMC sampler

MCMC Sampler started at μ_0 will output $X \sim \mu_0 P$ with $TV(\mu_0 P_1, \mu_1) \leq \varepsilon$ In the next phase, an initial dist. is in fact $\mu_0 P_1$, not μ_1 . No triangle inequality coupling TV and \mathscr{R}_{∞}

However, the annealing algorithm still proceeds as if the starting distribution is μ_1 Previous works use a coupling argument for analysis, reducing everything to TV.

• Due to inexact error from Markov chains, any guarantee is eventually **collapsed** to TV

- - Previous approaches cannot avoid this "TV-collapse" issue

• If INO uses a warm start generated by this annealing scheme, then its final guarantee

ends up collapsing to TV as well

45

If a sampler has a \mathscr{R}_{∞} -guarantee, then can relay ${\mathscr R}_\infty$ -guarantees through the triangle inequality

ℛ∞ **is difficult**

- \bullet Prior sampling \mathscr{R}_q -guarantees involve a complexity at least linear in q
	- Useless for \mathscr{R}_{∞}
- \bullet A Markov-semigroup approach used for \mathscr{R}_q doesn't go through for \mathscr{R}_∞

In this work, we boost $\text{TV} \to \mathscr{R}_\infty$ without overhead via a log-Sobolev inequality (LSI)

Revisit the theory of Markov semigroups

• Let $P: \Omega \times \mathcal{F} \to [0,1]$ be a Markov kernel. Then,

 $\mu P(\cdot) :=$

 $Pf(x):=$

• Convergence rate is characterized by the **contractivity** of a Markov kernel:

 $||P||$ *Lp*→*Lp* :=

where $L_0^p := \{f : \mathbb{E}_{\pi}[|f|^p] < \infty, \mathbb{E}_{\pi}f = 0\}.$ $\mathcal{C}_0^p := \{f : \mathbb{F}_p[|f|] \}$ $p_1 < \infty, \mathbb{E}_{\pi} f = 0$

$$
\int_{\Omega} P(\cdot | x) \mu(dx)
$$

$$
\int_{\Omega} f(y) P(dy | x)
$$

$$
:= \sup_{0 \neq f \in L_0^p} \frac{\|Pf\|_{L^p}}{\|f\|_{L^p}}
$$

Revisit the theory of Markov semigroups

The most classical setting is the $'L^2(\pi) \to L^2(\pi)$ contraction"

-
- If $\gamma := ||P||_{L^2 \to L^2}$, then the so-called **spectral gap** of P is 1γ

Q. What about contraction in $L^{\infty} \to L^{\infty}$? $(\text{recall } ||f||_{L^{\infty}} := \inf \{ C : |f| \leq C \} = \text{esssup } |f|$)

Revisit the theory of Markov semigroups

Q. What about contraction in $L^{\infty} \to L^{\infty}$?

where 1_{π} is the operator defined by $1_{\pi}(f) := \mathbb{E}_{\pi}f$. $||P^n - 1$ ^π $||L^∞ → L^∞ = 2$ esssup_{*x*} TV($δ_xP^n$

- $\bf Theorem$ [Rudolf'11]. Let P be a Markov kernel reversible w.r.t. stationary π . Then,
	- , *π*)
	-

Convergence from any start implies *L* **-contraction** [∞]

By substituting $f = \frac{f}{1} - 1$, one can deduce d*μ* $\frac{1}{d\pi} - 1$ $\mathscr{R}_{\infty}(\mu P^n \mid \mid \pi) \leq$ $d(\mu P^n)$ $\frac{1}{d\pi} - 1$ $\log(1 + x) \leq x$

$$
\leq \left\| \frac{d\mu}{d\pi} - 1 \right\|_{L^{\infty}} \cdot 2 \operatorname{esssup}_{x} \text{TV}(\delta_{x} P^{n}, \pi)
$$

∴ Uniform TV-bound over any start $x \in \Omega \implies \mathscr{R}_{\infty}$ -bound

51

Functional inequalities for boosting

Q. When can we bound sup $\textsf{TV}(\delta_x P^n, \pi)$ without huge overhead? *x*∈Ω $\mathsf{TV}(\delta_x P^n)$, *π*)

 \rightarrow (PI) ensures an exponential contraction in χ^2 such as *χ*2 $(\delta_x P^n || \pi) \leq \exp\left(-\frac{n}{C}\right)$

 \rightarrow (LSI) ensures an exponential contraction in KL such as

 $KL(\delta_x P^n || \pi) \leq exp$

ion in
$$
\chi^2
$$
 such as

$$
o\left(-\frac{n}{C_{\text{PI}}(\pi)}\right)\chi^2(\delta_x P^1 \parallel \pi)
$$

$$
\left(-\frac{n}{C_{\text{LSI}}(\pi)}\right) \text{KL}(\delta_x P^1 \parallel \pi)
$$

52

Functional inequalities for boosting

Q. When can we bound sup $\textsf{TV}(\delta_x P^n, \pi)$ without huge overhead? *x*∈Ω $\mathsf{TV}(\delta_x P^n)$, *π*)

Recall $2 \text{TV}^2 \leq \text{KL} \leq \log(1 + \chi^2) \leq \chi^2$. In general, $KL(\delta_{x}P || \pi) = poly(d)$ *χ*2 $(\delta_x P || \pi) = \exp(\text{poly}(d))$

Under (PI), the convergence rate would have the overhead of $\log \chi_0^2$

Under (LSI), the convergence rate would have the overhead of $\log \mathsf{KL}_0 = \mathsf{polylog}(d)$ $a_0^2 = \text{poly}(d)$

LSI can provide \mathcal{R}_{∞} -guarantee only with polylog overhead!

Annealing through Gaussians

Work with the **Gaussian cooling** [Cousin and Vempala'18]:

→ Need a sampler for a truncated Gaussian

-
- with $\mu_i = \mathsf{N}(0, \sigma_i^2 I_d)|_K$ and $\mu_0 \to \cdots \to \mu_i \to \mu_{i+1} \to \cdots \to \mu_k \to \pi$ with $\mu_i = \mathsf{N}(0,\sigma_i^2 I_d)|_K$ and $\pi = \mathsf{Unif}(K)$

Proximal sampler once again!

Sampling from a truncated Gaussian

Proximal sampler for a truncated Gaussian $\pi(x, y) \propto \exp\left(-V(x) - \frac{1}{2} \right)$

- 1. Sample $y_{i+1} \sim \pi^{Y|X=x_i}(y) = N(x_i, hI_d)$
- 2. Sample $x_{i+1} \sim \pi^{X|Y=y_{i+1}}(x) \propto \exp\left(-V(x) - \frac{1}{2\pi i}\right)$

Algorithm: Repeat

Q. What's (1) the convergence rate and (2) query complexity of the backward step?

$$
\frac{1}{2h} ||x - y||^2) \text{ with } V(x) = \frac{1}{2\sigma^2} ||x||^2 \cdot 1_K(x)
$$

$$
\frac{1}{2h} ||x - y||^2 = N\left(\frac{1}{1 + h\sigma^{-2}} y_{i+1}, \frac{h}{1 + h\sigma^{-2}} I_d\right)\Big|_K
$$

Uniform ergodicity of proximal sampler

-
- for $\mathcal{R}_q(\delta_x P^n || \pi) \leq \varepsilon$ for $\pi = \mathsf{N}(0, \sigma^2 I_d) \big|_K$
	-

$$
_{\text{SI}}(\pi) \leq \sigma^2
$$

Theorem. Under suitable choices of parameters, for any $x \in K$, after $n = O\left(qd^2C_{\text{LSI}}(\pi) \log \frac{1}{\text{Tr}(\pi)}\right)$ iterations. \widetilde{O} $\widetilde{O}(qd^2C_{\text{LSI}}(\pi)\log\frac{\text{poly}(d,D)}{n})$ *^ε*)

Fact 1 [Bakry-Émery]. $C_{\text{LSI}}(N(\mu, \sigma^2 I_d)) \leq \sigma^2$ **Fact 2** [Bakry-Gentil-Ledoux]. Convex truncation doesn't increase *C*

∴ C_1

Uniform ergodicity of proximal sampler

Theorem. Under suitable choices of parameters, for any $x \in K$,

-
- for $TV(\delta_x P^n, \pi) \leq \varepsilon$ for $\pi = N(0, \sigma^2)$ $I_d)$ $\big|_K$
	-

 for $\mathscr{R}_{\infty}(\mu P^{n} \mid \pi) \leq \varepsilon$ for $\pi = \mathsf{N}(0, \sigma^{2}I_{d})|_{K}$

after
$$
n = \widetilde{O}(d^2\sigma^2 \log \frac{\text{poly}(d, D)}{\varepsilon})
$$
 iterations.

Boost from TV (from any start) $\rightarrow \mathscr{R}_{\infty}$

Query complexity of proximal sampler

Use a rejection sampling to implement the backward-step

 \exists parameters h, N such that with probability $\geq 1 - \delta$,

 \widetilde{O} *O*(*Md*² *σ*² polylog *D δε*)

- **Theorem.** [Complexity] For a well-rdd convex K , failure prob. $\delta \in (0,1)$, target acc. $\varepsilon \in (0,1)$,
	- the Proximal sampler with M -warm start ensures $\mathscr{R}_{\infty}(\mathsf{law}(X_n) \Vert \pi) \leq \varepsilon$ by using $O(Md^2\sigma^2)$ polylog membership queries in expectation.

Annealing through Gaussians

Employ the proximal sampler within the **Gaussian cooling** [Cousin and Vempala'18]: with $\mu_i = \mathsf{N}(0, \sigma_i^2 I_d)|_K$ and

$$
\mu_0 \to \cdots \to \mu_i \to \mu_{i+1} \to \cdots \to \mu_k \to \pi
$$
 with $\mu_i = N(0, \sigma_i^2 I_d)|_K$ and $\pi = \text{Unif}(K)$

Set
$$
\sigma_0^2 = 1/d
$$
, and update according to
\n
$$
\sigma_{i+1}^2 \leftarrow \begin{cases}\n\sigma_i^2 \left(1 + \frac{1}{d}\right) & \text{if } d^{-1} \leq \sigma_i^2 \leq 1 \\
\sigma_i^2 \left(1 + \frac{\sigma_i^2}{d}\right) & \text{if } 1 \leq \sigma_i^2 \leq d\n\end{cases}
$$

Annealing through Gaussians

$$
\sigma_{i+1}^2 \leftarrow \begin{cases} \sigma_i^2 \left(1 + \frac{1}{d}\right) & \text{if } d^{-1} \le \sigma_i^2 \le 1\\ \sigma_i^2 \left(1 + \frac{\sigma_i^2}{d}\right) & \text{if } 1 \le \sigma_i^2 \le d \end{cases}
$$

Query complexity of Gaussian sampling from an $O(1)$ -warm start: $d^2\sigma^2$

- 1. During $d^{-1} \leq \sigma_i^2 \leq 1$, needs $\widetilde{O}(d)$ phases for doubling of $\sigma_i^2 \to \#$ queries : \widetilde{O}
- 2. During $1 \le \sigma_i^2 \lesssim d$, needs $O(d/\sigma_i^2)$ phases for doubling $\rightarrow \#$ queries : \widetilde{O}
	-

 $\overline{O}(d)$ phases for doubling of $\sigma_i^2 \rightarrow \#$ queries : $d \cdot d^2 \sigma^2 \leq d^3$

 $\overline{O}(d/\sigma_i^2)$ phases for doubling $\rightarrow \#$ queries : $d/\sigma^2 \cdot d^2 \sigma^2 \leq d^3$

 \therefore Total query complexity through annealing: d^3

Wrap-up in the last phase

Wrap-up for uniform sampling in the last phase $\mu_k = N(0, dI_d)|_k$

- Use the boosting for uniform sampling via LSI
- \rightarrow INO (or proximal sampler)'s complexity: $O(d^2C_{\text{LSI}}) = O(d^2D^2)$ in the last phase \widetilde{O}

$$
K \longrightarrow \pi = \text{Unif}(K)
$$

$\overline{O}(d^2C_{\text{LSI}})$ = \widetilde{O} $O(d^2D^2)$

61

Wrap-up in the last phase

Wrap-up for uniform sampling in the last phase

 $\mu_k = N(0, dI_d)$ |

Better way?

Rationale: A log-concave dist. has a sub-exponential tail

 when $P_{\pi}(\|X - \mu\| \ge t\sqrt{d}) \le \exp(-t + 1)$ when $\mathbb{E}_{\pi}[\|X\|^2] = O(d)$

$$
K \longrightarrow \pi = \text{Unif}(K)
$$

Can work with the uniform dist. $\hat{\pi}$ over a truncated body $K \cap B_{O(d^{1/2})}(0)$ due to $\mathscr{R}_\infty(\hat{\pi} \, \| \, \pi) = O(1)$

Wrap-up in the last phase

Wrap-up for uniform sampling in the last phase

 $\mu_k = N(0, dI_d)$ |

After truncation by $B_{O(d^{1/2})}(0)$: $D = O(d^{1/2})$ so $C_{\text{LSI}}(\hat{\pi})$

$$
K \longrightarrow \pi = \text{Unif}(K)
$$

$$
C_{LSI}(\hat{\pi}) = O(D^2) = O(d)
$$

∴ INO's complexity is d^3 for uniform sampling in the last phase

Putting together

2. **Uniform sampling in the last phase** \widetilde{O}

> ∴ $O(d^3$ polylog—) membership queries for uniform sampling with \mathscr{R}_{∞} -guarantee \widetilde{O} $O(d^3)$ polylog *D* $\overline{\delta \varepsilon}$) membership queries for uniform sampling with \mathscr{R}_{∞}

 \rightarrow Matches the prior best known complexity in TV [Cousin and Vempala'18]

1. **Annealing through Gaussian**

 \widetilde{O} $O(d^3)$ polylog

$$
lylog \frac{D}{\delta}) \text{ queries}
$$

$$
\overline{O}\left(d^3 \text{ polylog} \frac{D}{\delta \varepsilon}\right) \text{ queries}
$$

