Rényi-infinity Uniform Sampling via Algorithmic Diffusion

Yunbum Kook Georgia Tech CS

Oct 4, 2024 University of Toronto, TCS seminar

Outline

• Part I: Uniform sampling over a convex body through diffusions - arXiv:2405.01425

• Part II: Warm-start generation without "TV collapse"

- arXiv:2407.12967

Part I - Collaborators

In-and-Out: Algorithmic Diffusions for Sampling Convex Bodies NeurIPS'24

Santosh Vempala Georgia Tech

Matthew Zhang University of Toronto

Uniform sampling is (maybe) all you need

Sampling from a log-concave $d\pi \propto \exp(-V) dx$

- Main subroutine in volume computation
- System biology

. . .

Uniform sampling from a convex body *K*

Uniform sampling in formulation

Problem. Let *K*: convex body in \mathbb{R}^d and $\pi = \text{Unif}(K)$. How many <u>membership oracle</u> queries are needed to generate a sample *X* whose law is ε -close to π in some *D*?

 $D(law(X), \pi) \leq \varepsilon$ for some probability divergence/distance D = TV, KL, χ^2 etc.

Geometric random walk

Ball walk (δ)

- 1. Pick $z \in B_{\delta}(x)$
- 2. Move to z if $z \in K$. Stay at x o.w.

Hit-and-Run

- 1. Pick a uniform random line ℓ through the current point x
- 2. Move to a uniform random point on the chord $\ell \cap K$

Another line of log-concave sampling research

Problem (Well-conditioned log-concave sampling).

(strong convexity and smoothness of a potential V) over \mathbb{R}^d .

whose law is ε -close to π ?

- Let $\pi \propto \exp(-V)$ be a smooth unconstrained distribution with $\alpha I \leq \nabla^2 V \leq \beta I$
- How many access to the first-order oracle of V are needed to generate a sample X

Well-conditioned log-concave sampling

- General approach for getting an implementable algorithms 1. Understand the Langevin dynamics (SDE) with stationary $\pi \propto \exp(-V)$: $dX_t = -\nabla V(X_t) dt + \sqrt{2} dB_t$
- 2. Discretize it in time:
 - Euler-Maruyama discretization
 - Randomized midpoint method
 - So on...

Well-conditioned log-concave sampling

Analysis

- 1. Establish the mixing of the Langevin dynamics in W_2 , KL, χ^2 (or generally Rényi)
- 2. Discretization-analysis somehow preserves the mixing metric
 - Girsanov's theorem [Dalalyan and Tsybakov'12]
 - Interpolation method [Vempala and Wibisono'19]
 - Hypercontractivity [Chewi et al.'21]
 - Shifted composition rule [Altschuler and Chewi'24]

Hierarchy of probability distance/divergence

$$\mathbf{TV}(\mu, \pi) = \sup_{S} |\mu(S) - \pi(S)|$$

 $W^{2}(\mu, \pi) = \inf_{\Gamma(\mu, \pi)} \mathbb{E}_{(X, Y) \sim \Gamma}[\|X - Y\|^{2}]$

A current state of affairs

[Constrained sampling]

Algs Ball walk, Hit-and-Run Metrics TV, χ^2 Tools Conductance

Fundamental gap here?

[Unconstrained sampling] Algs Langevin-based Metrics \mathscr{R}_{q} Tools

Wasserstein calculus, optimal transport, Markov semigroup theory, interpolation method, Girsanov's argument, Shifted composition rule,.....

Let's bridge this gap

[Constrained sampling]

Algs <u>New sampler</u> Metrics

$$\mathscr{R}_q$$
 (and \mathscr{R}_∞ in fact)

Tools

Continuous interpolation via a forward/backward SDE

Can borrow these techniques!

[Unconstrained sampling]

Algs Langevin-based Metrics

\mathscr{R}_q Tools

Wasserstein calculus, optimal transport, Markov semigroup theory, interpolation method, Girsanov's argument, Shifted composition rule,.....

In-and-Out

In-and-Out

[Forward] Sample $y_{i+1} \sim N(x_i, hI_d)$ [Backward] Sample $x_{i+1} \sim N(y_{i+1}, hI_d)|_K$

* One iteration = forward + backward step

In-and-Out

Input: initial point $x_0 \sim \pi_0$ & convex body $K \subset \mathbb{R}^d$ & threshold N & step size h **Output:** X_T

• For
$$i = 0, ..., T$$

- 1. Sample $y_{i+1} \sim N(x_i, hI_d) = x_i + N(0, hI_d)$
- 2. Sample $x_{i+1} \sim N(y_{i+1}, hI_d)|_{\kappa}$

[Implementation]

 $-x_{i+1} \sim N(y_{i+1}, hI_d)$ until $x_{i+1} \in K$

- If [# attempts $\geq N$], then declare **Failure**

Where does it come from? Connection to proximal sampler [Lee, Shen, and Tian'21] **Goal:** Sample from $\pi(x) \propto \exp(-V(x))$ over \mathbb{R}^d To this end, augment another variable $y \in \mathbb{R}^d$ to consider $\pi(x, y) \propto \exp(-$

Algorithm: Repeat

1. Sample $y_{i+1} \sim \pi^{Y|X=x_i}(y) = N(x_i, hI_d)$

2. Sample $x_{i+1} \sim \pi^{X|Y=y_{i+1}}(x) \propto \exp(-V)$

$$-V(x) - \frac{1}{2h} ||x - y||^2$$

$$V(x) - \frac{1}{2h} \|x - y\|^2$$

Where does it come from?

Connection to proximal sampler [Lee, Shen, and Tian'21]

Algorithm: Repeat

- 1. Sample $y_{i+1} \sim \pi^{Y|X=x_i}(y) = N(x_i, hI_d)$
- 2. Sample $x_{i+1} \sim \pi^{X|Y=y_{i+1}}(x) \propto \exp(-\frac{1}{2})$

In-and-Out is the Proximal sampler with $\pi(x) \propto 1_K(x)$

$$\frac{1}{2h} \|x - y\|^2 \big|_K$$

Proximal sampler in measure level

Outline of analysis

- **1. Contraction** through one-iteration of INO (proximal sampler)
- 2. Query complexity of the implementation for the backward step

Forward / backward SDE interpretation by [Chen et al.'22]

Forward step: Sample $y_{i+1} \sim \pi^{Y|X=x_i}(y) = N(x_i, hI_d)$

$$Z_0 \sim \text{law}(X_i)$$
 $dZ_t = dZ_t$

Forward / backward SDE interpretation by [Chen et al.'22]

Backward step: Sample $x_{i+1} \sim \pi^{X|Y=y_{i+1}}(x)$

$$Z_0 \sim \text{law}(X_i) \qquad \text{d}Z_t = \text{d}B_t \text{ for } t \in [0,h] \qquad Z_h \sim \text{law}(Y_{i+1})$$

$$dZ_t^{\leftarrow} = \nabla \log(\pi^X Q_{h-t})(Z_t^{\leftarrow}) \, \text{d}t + \text{d}B_t \text{ for } t \in [0,h] \qquad Z_0^{\leftarrow} = Z_h$$

$$Z_0 \sim \text{law}(X_i) \qquad \text{d}Z_t = \text{d}B_t \text{ for } t \in [0,h] \qquad Z_h \sim \text{law}(Y_{i+1})$$

$$Z_h^{\leftarrow} \sim \text{law}(X_{i+1}) \qquad \text{d}Z_t^{\leftarrow} = \nabla \log(\pi^X Q_{h-t})(Z_t^{\leftarrow}) \text{ d}t + \text{d}B_t \text{ for } t \in [0,h] \qquad Z_0^{\leftarrow} = Z_h$$

$$x) \propto \exp\left(-V(x) - \frac{1}{2h} \|x - y_{i+1}\|^2\right)$$

A1. Avoid discretization-analysis A2. Use tools from Markov semigroup theory

Q. Benefits of introducing an SDE representation?

Contraction via forward/backward heat-flow Forward / backward SDE interpretation by [Chen et al.'22] Using Markov semigroup theory + Wasserstein calculus, one can show Forward SDE: $dZ_t = dB_t$ with $Z_0 \sim \mu_i^X \implies Z_h \sim \mu_{i+1}^Y$

$$\chi^{2}(\mu_{i+1}^{Y} \| \pi^{Y}) \leq \frac{\chi^{2}(\mu_{i}^{X} \| \pi^{X})}{1 + h/C_{\mathsf{PI}}(\pi^{X})}$$
$$\mathsf{KL}(\mu_{i+1}^{Y} \| \pi^{Y}) \leq \frac{\mathsf{KL}(\mu_{i}^{X} \| \pi^{X})}{1 + h/C_{\mathsf{LSI}}(\pi^{X})}$$

 $\frac{1}{X_{Y}}$ under a Poincaré inequality (PI)

- under a log-Sobolev inequality (LSI)

Contraction via forward/backward heat-flow Forward / backward SDE interpretation by [Chen et al.'22] Using Markov semigroup theory + Wasserstein calculus, one can show Backward SDE: $dZ_t^{\leftarrow} = \nabla \log(\pi^X Q_{h-t})(Z_t^{\leftarrow})$

$$\chi^{2}(\mu_{i+1}^{X} \| \pi^{X}) \leq \frac{\chi^{2}(\mu_{i+1}^{Y} \| \pi^{Y})}{1 + h/C_{\mathsf{PI}}(\pi^{X})}$$
$$\langle \mathsf{L}(\mu_{i+1}^{X} \| \pi^{X}) \leq \frac{\mathsf{KL}(\mu_{i+1}^{Y} \| \pi^{Y})}{1 + h/C_{\mathsf{LSI}}(\pi^{X})}$$

$$(t^{\leftarrow}) dt + dB_t \text{ with } Z_0^{\leftarrow} \sim \mu_{i+1}^Y \Longrightarrow Z_h^{\leftarrow} \sim \mu_{i+1}^X$$

 $\frac{1}{X_{1}}$ under a Poincaré inequality (PI)

under a log-Sobolev inequality (LSI)

Forward / backward SDE interpretation by [Chen et al.'22]

Composing one forward + backward contraction,

$$\chi^{2}(\mu_{i+1}^{X} \| \pi^{X}) \leq \frac{\chi^{2}(\mu_{i}^{X} \| \pi^{X})}{\left(1 + h/C_{\mathsf{PI}}(\pi^{X} \| \pi^{X}) + KL(\mu_{i+1}^{X} \| \pi^{X})\right)}$$

$$\mathsf{KL}(\mu_{i+1}^{X} \| \pi^{X}) \leq \frac{\mathsf{KL}(\mu_{i}^{X} \| \pi^{X})}{\left(1 + h/C_{\mathsf{LSI}}(\pi^{X})\right)}$$

* Can still use this result, though π_K is not smooth around ∂K ! (Convolve with $N(0, \epsilon I_d)$ & Use the lower-semi continuity of f-divergence as $\epsilon \to 0$)

* Can be extended to a q-Rényi divergence

 $\frac{1}{(N)^2}$ under a Poincaré inequality (PI)

 $\frac{1}{\sqrt{2}}$ under a log-Sobolev inequality (LSI)

Functional inequalities for π

Poincaré inequality (PI)

Log-Sobolev inequality (LSI)

Caveat. This depends only on a measure π , not on a Markov chain/kernel

 $\operatorname{var}_{\pi} f \leq C_{\operatorname{PT}}(\pi) \mathbb{E}_{\pi}[\|\nabla f\|^2]$ for any smooth $f: \mathbb{R}^d \to \mathbb{R}$

 $\operatorname{Ent}_{\pi}(f^2) \leq 2C_{\operatorname{LST}}(\pi) \mathbb{E}_{\pi}[\|\nabla f\|^2]$ for any smooth $f: \mathbb{R}^d \to \mathbb{R}$

Known results on log-concave distribution $\pi \propto \exp(-V)$ over \mathbb{R}^d

- 1. $C_{\text{PT}}(\pi) \leq C_{\text{IST}}(\pi)$ in general
- 2. $C_{\rm PT}(\pi)$
 - $\|\operatorname{Cov}(\pi)\|_{\operatorname{OD}} \leq C_{\operatorname{PI}}(\pi) \leq \psi_d \cdot \|\operatorname{Cov}(\pi)\|_{\operatorname{OD}}$
 - KLS conjecture: $\psi_d = \Theta(1)$
 - $\psi_d \leq \log d$ [Klartag'23]

3. $C_{LSI}(\pi) = O(D^2)$ for a log-concave π with support of diameter D

Relating mixing guarantees to functional inequalities

Theorem. For $\varepsilon \in (0,1)$ and $K \subset B_D(0)$, INO with step-size h and M-warm initial distribution achieves $\mathscr{R}_q(\mu_n || \pi_K) \leq \varepsilon$ after the following # of iterations:

$$n \asymp \min \begin{cases} qd^2 \|\operatorname{Cov}(\pi_K)\|_{\operatorname{Op}} \log \frac{M}{\varepsilon} & \text{for } q \ge 2\\ qd^2 D^2 \log \frac{\log M}{\varepsilon} & \text{for } q \ge 1 \end{cases}$$

(\uparrow) Substitute the known bounds on $C_{\rm PT}, C_{\rm LST}$ and $h \asymp d^{-2}$

Rejection sampling for the backward step $x_{i+1} \sim N(y_{i+1}, hI_d)|_{K}$

[Implementation via rejection sampling]

 $-x_{i+1} \sim N(y_{i+1}, hI_d)$ until $x_{i+1} \in K$

But this is bound to fail

Rejection sampling for the backward step $x_{i+1} \sim N(y_{i+1}, hI_d)|_{K}$

Suppose we're already at stationarity $\pi^X = \text{Unif}(K)$

 $\rightarrow \pi^Y = \pi^X$

 \rightarrow Simply, the success probability of the rejection sampling at y

* N(0,
$$hI_d$$
) = $\frac{\ell(y)}{\operatorname{vol}(K)}$

where $\ell(y)$ is a Gaussian version of local conductance [Kannan et al.'97] defined by

$$\frac{\exp(-\frac{1}{2h}\|x-y\|^2)\,\mathrm{d}y}{\exp(-\frac{1}{2h}\|x-y\|^2)\,\mathrm{d}y}$$

Rejection sampling for the backward

Then the expected number of trials (until success) for one iteration is

$$\mathbb{E}_{\pi^{Y}}\left[\frac{1}{\ell(y)}\right] = \int_{\mathbb{R}^{d}} \frac{1}{\ell(y)} \frac{\ell(y)}{\operatorname{vol}(K)} \, \mathrm{d}y = \infty$$

Q. Can bypass this issue?

$$\mathsf{step} \ x_{i+1} \sim \mathsf{N}(y_{i+1}, hI_d) \big|_K$$

Rejection sampling for the backward step $x_{i+1} \sim N(y_{i+1}, hI_d)|_{K}$

Lemma. $\pi^{Y}(\mathbb{R}^{d}\setminus K_{\delta}) \leq \exp(-\Theta(t^{2}))$ for step-size $h = \Theta(d^{-2})$ and $\delta = t/d$.

 $\rightarrow K_{\delta}$ is sort of "effective domain" of π^{Y}

Insight: Ignore whatever happens outside of this effective domain K_{δ}

Rejection sampling for the backward

Proposition. For $y \in K_{\delta}^{c}$ with $\delta = t/d$ and $h \asymp d^{-2}$,

- Expected #trials from K_{δ}^c for the rejection sampling $\rightarrow \ell(y)^{-1} \ge \exp(\Omega(t^2))$
- \therefore Can ignore algorithmic behaviors from K^c_{δ} by setting a threshold $N = O(\exp(t^2))$ and considering the algorithm as having "failed" if #trials $\geq N$

$$\mathsf{step} \ x_{i+1} \sim \mathsf{N}(y_{i+1}, hI_d) \big|_K$$

- **Q.** Characteristic of the complement of the effective domain K_{δ} ?

 - $\ell(y) \leq \exp(-\Omega(t^2))$.

- **Rejection sampling for the backward**
- - 1. failure prob. of one backward-step $\leq \delta/T$
 - 2. the expected # of queries per backward-step $\leq M$ polylog (TM/δ)

step
$$x_{i+1} \sim \mathsf{N}(y_{i+1}, hI_d) |_K$$

Theorem. (Complexity of backward step) For failure prob. $\delta \in (0,1)$ and $T \in \mathbb{N}$, there exists suitable choices of parameters h, N such that

 \therefore During T iterations, (1) the total failure prob. is $\leq \delta$, and (2) the total query complexity is $\widetilde{O}(MT \operatorname{polylog}(1/\delta))$

Guarantee of In-and-Out

Assumption:

- 1. Access to a membership oracle for a convex body $K \subset \mathbb{R}^d$ with unit ball in K.
- 2. An initial π_0 is *M*-warm w.r.t. target $\pi = \text{Unif}(K)$ - Precisely, $d\pi_0/d\pi \leq M$ a.s.

- **Theorem.** Given failure prob. $\delta \in (0,1)$, target acc. $\varepsilon \in (0,1)$, and $q \ge 1$, there exists choices of parameters h, N such that with probability $\geq 1 - \delta$,
 - INO started at π_0 ensures $\mathscr{R}_q(\operatorname{law}(X_n) \| \pi) \leq \varepsilon$ after $n = \widetilde{O}(qd^2 \| \operatorname{Cov}(\pi) \|_{\operatorname{Op}} \operatorname{polylog}(M/\delta \varepsilon))$ iterations, using $\widetilde{O}(qMd^2 \| \text{Cov}(\pi) \|_{OD}$ polylog $(1/\delta \varepsilon)$ membership queries in expectation.

Matching results of Ball walk

exists choices of parameters h, N such that with probability $\geq 1 - \delta$,

Previous best complexity via **Ball walk**:

- **Theorem.** Given failure prob. $\delta \in (0,1)$, target acc. $\varepsilon \in (0,1)$, and $q \ge 1$, there
 - INO started at π_0 ensures $\mathscr{R}_q(\operatorname{law}(X_n) \| \pi) \leq \varepsilon$ by using $\widetilde{O}(qMd^2 \| \operatorname{Cov}(\pi) \|_{\operatorname{Op}} \operatorname{polylog}(1/\delta \varepsilon))$ membership queries in expectation.

- \rightarrow Achieving ε -TV distance from *M*-warm start needs $O(Md^2 \|Cov(\pi)\|_{OD} \operatorname{polylog}(1/\delta\varepsilon))$ queries.
- INO recovers the matching result under stronger performance metrics and principled approaches!

Chicken-and-egg problem

Awkward situation...

Observation

INO needs $\widetilde{O}(qMd^2 \| \text{Cov}(\pi) \|_{\text{op}} \text{ polylog} \frac{1}{\delta c})$ queries where $M = \exp(\mathscr{R}_{\infty}(\pi_0 \| \pi))$

Needs \mathscr{R}_{∞} -warmness to get \mathscr{R}_{q} -result (denote INO: $\mathscr{R}_{\infty} \to \mathscr{R}_{q}$). Same issue with BW (SW + rejection): $\mathscr{R}_{\infty} \to TV$.

Q. How to get a warm-start in \mathscr{R}_{∞} ?

Part II - Collaborators

Rényi-infinity constrained sampling with d^3 **membership queries** SODA'25

Matthew Zhang University of Toronto

Warm-start generation

Problem. Let $K \subset \mathbb{R}^d$ be a "well-rounded" convex body (i.e., $\mathbb{E}_{\pi}[||X||^2] = O(d)$) containing a unit ball. Can we generate a warm start X such that

 $\mathscr{R}_{\sim}(\operatorname{law}(X) \parallel \pi) = O(1)?$

Note) There is a known method for making K well-rounded [Jia et al.'21]

A common approach is "annealing":

$$\mu_0 \to \mu_1 \to \cdots \to \mu$$

- μ_0 : easy dist. (from which we can easily sample)
- Generate μ_{i+1} starting from μ_i (by some samplers)
- Here, μ_i is a warm start for μ_{i+1} (i.e., μ_i and μ_{i+1} are already close)

$\mu_i \to \mu_{i+1} \to \cdots \to \mu_k \to \pi$

- 1. Uniform annealing [Dyer-Frieze-Kannan'89 ~ Kannan-Lovász-Simonovits'97] $\mu_i = K \cap (2^{i/d} B_1(0))$ $\mathscr{R}_{\infty}(\mu_{i} \| \mu_{i+1}) = O(1)$
- 2. Exponential annealing [Lovász and Vempala'06] $\mu_i \propto \exp(-a_i^{\mathsf{T}} x) |_{\mathbf{K}}$
- 3. Gaussian annealing [Cousin and Vempala'18]
 - $\mu_i \propto \exp\left(-\frac{1}{2\sigma^2} \|x\|^2\right)|_K$

Recall $\mathscr{R}_2 = \log(\chi^2 + 1)$

 $\Re_{2}(\mu_{i} \| \mu_{i+1}) = O(1)$

sampling the annealing distribution μ_i .

However, HAR or SW has guarantees in χ^2 or TV.

Previous works rely on Hit-and-Run or [Speedy walk + rejection sampling] for

 P_1 : Markov kernel of the MCMC sampler

MCMC Sampler started at μ_0 will output $X \sim \mu_0 P$ with $TV(\mu_0 P_1, \mu_1) \leq \varepsilon$ In the next phase, an initial dist. is **in fact** $\mu_0 P_1$, not μ_1 . No triangle inequality coupling TV and \mathscr{R}_{∞}

However, the annealing algorithm still proceeds as if the starting distribution is μ_1 Previous works use a <u>coupling argument</u> for analysis, reducing everything to TV.

- - Previous approaches cannot avoid this "TV-collapse" issue

ends up collapsing to TV as well

• Due to inexact error from Markov chains, any guarantee is eventually <u>collapsed to TV</u>

• If INO uses a warm start generated by this annealing scheme, then its final guarantee

If a sampler has a \mathscr{R}_{∞} -guarantee, then can relay \mathscr{R}_{∞} -guarantees through the triangle inequality

\mathscr{R}_{∞} is difficult

- Prior sampling \mathscr{R}_q -guarantees involve a complexity at least linear in q
 - Useless for \mathscr{R}_{∞}
- A Markov-semigroup approach used for \mathscr{R}_q doesn't go through for \mathscr{R}_{∞}

In this work, we boost $TV \rightarrow \mathscr{R}_{\infty}$ without overhead via a log-Sobolev inequality (LSI)

Revisit the theory of Markov semigroups

• Let $P: \Omega \times \mathscr{F} \to [0,1]$ be a Markov kernel. Then,

 $\mu P(\cdot) :=$

Pf(x) :=

• Convergence rate is characterized by the **contractivity** of a Markov kernel:

 $||P||_{I^{p} \to I^{p}}$

where $L_0^p := \{f : \mathbb{E}_{\pi}[|f|^p] < \infty, \mathbb{E}_{\pi}f = 0\}.$

$$\int_{\Omega} P(\cdot | x) \mu(dx)$$
$$\int_{\Omega} f(y) P(dy | x)$$

$$:= \sup_{0 \neq f \in L_0^p} \frac{\|Pf\|_{L^p}}{\|f\|_{L^p}}$$

Revisit the theory of Markov semigroups

The most classical setting is the " $L^2(\pi) \rightarrow L^2(\pi)$ contraction"

- If $\gamma := ||P||_{L^2 \to L^2}$, then the so-called **spectral gap** of P is 1γ

Q. What about contraction in $L^{\infty} \to L^{\infty}$? $(\text{recall } ||f||_{L^{\infty}} := \inf \{C : |f| \le C\} = \text{esssup } |f|)$

Revisit the theory of Markov semigroups

Q. What about contraction in $L^{\infty} \to L^{\infty}$?

where 1_{π} is the operator defined by $1_{\pi}(f) := \mathbb{E}_{\pi}f$.

- **Theorem** [Rudolf'11]. Let P be a Markov kernel reversible w.r.t. stationary π . Then,
 - $||P^n 1_{\pi}||_{L^{\infty} \to L^{\infty}} = 2 \operatorname{esssup}_{Y} \operatorname{TV}(\delta_{X} P^n, \pi)$

Convergence from any start implies L^{∞} -contraction

By substituting $f = \frac{d\mu}{d\pi} - 1$, one can deduce $\mathscr{R}_{\infty}(\mu P^{n} \| \pi) \leq \left\| \frac{\mathsf{d}(\mu P^{n})}{\mathsf{d}\pi} - 1 \right\|_{L^{\infty}}$ $\log(1+x) \le x$

$$\leq \left\| \frac{\mathrm{d}\mu}{\mathrm{d}\pi} - 1 \right\|_{L^{\infty}} \cdot 2 \operatorname{esssup}_{x} \operatorname{TV}(\delta_{x}P^{n}, \pi)$$

\therefore Uniform TV-bound over any start $x \in \Omega \implies \mathscr{R}_{\infty}$ -bound

Functional inequalities for boosting

Q. When can we bound sup $TV(\delta_x P^n, \pi)$ without huge overhead? $x \in \Omega$

 \rightarrow (**PI**) ensures an exponential contraction $\chi^2(\delta_{\mathbf{x}}P^n \parallel \pi) \lesssim \exp$

 \rightarrow (LSI) ensures an exponential contraction in KL such as

 $\mathsf{KL}(\delta_x P^n \parallel \pi) \lesssim \exp$

ion in
$$\chi^2$$
 such as

$$P\left(-\frac{n}{C_{\mathsf{PI}}(\pi)}\right)\chi^{2}(\delta_{x}P^{1} \parallel \pi)$$

$$\left(-\frac{n}{C_{\mathsf{LSI}}(\pi)}\right)\mathsf{KL}(\delta_x P^1 \parallel \pi)$$

Functional inequalities for boosting

Q. When can we bound sup $TV(\delta_x P^n, \pi)$ without huge overhead? $x \in \Omega$

Recall $2 \text{ TV}^2 \leq \text{KL} \leq \log(1 + \chi^2) \leq \chi^2$. In general, $\mathsf{KL}(\delta_{\mathbf{y}}P \parallel \pi) = \mathsf{poly}(d)$ $\chi^2(\delta_{\mathbf{y}} P \parallel \pi) = \exp(\operatorname{poly}(d))$

Under (**PI**), the convergence rate would have the overhead of $\log \chi_0^2 = \text{poly}(d)$

Under (LSI), the convergence rate would have the overhead of $\log KL_0 = polylog(d)$

LSI can provide \mathscr{R}_{∞} -guarantee only with polylog overhead!

Annealing through Gaussians

Work with the Gaussian cooling [Cousin and Vempala'18]:

 \rightarrow Need a sampler for a truncated Gaussian

- $\mu_0 \to \cdots \to \mu_i \to \mu_{i+1} \to \cdots \to \mu_k \to \pi$ with $\mu_i = \mathsf{N}(0, \sigma_i^2 I_d)|_K$ and $\pi = \mathsf{Unif}(K)$

Proximal sampler once again!

Sampling from a truncated Gaussian

Proximal sampler for a truncated Gaussian $\pi(x, y) \propto \exp\left(-V(x) - \frac{1}{2h}\|x - \frac{1}{2h}$

Algorithm: Repeat

- 1. Sample $y_{i+1} \sim \pi^{Y|X=x_i}(y) = N(x_i, hI_d)$
- 2. Sample $x_{i+1} \sim \pi^{X|Y=y_{i+1}}(x) \propto \exp(-V(x) V(x))$

Q. What's (1) the convergence rate and (2) query complexity of the backward step?

$$|-y||^2$$
) with $V(x) = \frac{1}{2\sigma^2} ||x||^2 \cdot 1_K(x)$

$$\frac{1}{2h} \|x - y\|^2 = \mathsf{N} \left(\frac{1}{1 + h\sigma^{-2}} y_{i+1}, \frac{h}{1 + h\sigma^{-2}} I_d \right) \Big|_{K}$$

Uniform ergodicity of proximal sampler

Theorem. Under suitable choices of parameters, for any $x \in K$, after $n = \widetilde{O}(qd^2C_{\text{LSI}}(\pi)\log\frac{\text{poly}(d,D)}{c})$ iterations.

Fact 1 [Bakry-Émery]. $C_{LSI}(N(\mu, \sigma^2 I_d))$ Fact 2 [Bakry-Gentil-Ledoux]. Convex truncation doesn't increase C_{LSI}

 $\therefore C_{\mathsf{I}}$

- $\mathscr{R}_{a}(\delta_{x}P^{n} \| \pi) \leq \varepsilon \text{ for } \pi = \mathsf{N}(0,\sigma^{2}I_{d})|_{K}$

$$\leq \sigma^2$$

$$_{\rm SI}(\pi) \leq \sigma^2$$

Uniform ergodicity of proximal sampler

Theorem. Under suitable choices of parameters, for any $x \in K$,

after
$$n = \widetilde{O}\left(d^2\sigma^2 \log \frac{\operatorname{poly}(d,D)}{\varepsilon}\right)$$
 iteration

Boost from TV (from any start) $\rightarrow \mathscr{R}_{\infty}$

- $\mathsf{TV}(\delta_x P^n, \pi) \leq \varepsilon \text{ for } \pi = \mathsf{N}(0, \sigma^2 I_d)|_{K}$
 - tions.

 $\mathscr{R}_{\infty}(\mu P^{n} \| \pi) \leq \varepsilon \text{ for } \pi = \mathsf{N}(0, \sigma^{2} I_{d})|_{K}$

Query complexity of proximal sampler

Use a rejection sampling to implement the backward-step

- **Theorem.** [Complexity] For a well-rdd convex K, failure prob. $\delta \in (0,1)$, target acc. $\varepsilon \in (0,1)$, \exists parameters h, N such that with probability $\geq 1 - \delta$,
 - the Proximal sampler with *M*-warm start ensures $\mathscr{R}_{\infty}(\operatorname{law}(X_n) \| \pi) \leq \varepsilon$ by using $\widetilde{O}(Md^2\sigma^2 \operatorname{polylog} \frac{D}{\delta\varepsilon})$ membership queries in expectation.

Annealing through Gaussians

$$\mu_0 \to \cdots \to \mu_i \to \mu_{i+1} \to \cdots \to \mu_k \to \pi$$

Set
$$\sigma_0^2 = 1/d$$
, and update according to
 $\sigma_{i+1}^2 \leftarrow \begin{cases} \sigma_i^2 \left(1 + \frac{1}{d}\right) & \text{if } d^{-1} \le \sigma_i^2 \le 1 \\ \sigma_i^2 \left(1 + \frac{\sigma_i^2}{d}\right) & \text{if } 1 \le \sigma_i^2 \le d \end{cases}$

Employ the proximal sampler within the Gaussian cooling [Cousin and Vempala'18]: π with $\mu_i = N(0, \sigma_i^2 I_d) |_K$ and $\pi = Unif(K)$

Annealing through Gaussians

$$\sigma_{i+1}^2 \leftarrow \begin{cases} \sigma_i^2 \left(1 + \frac{1}{d}\right) & \text{if } d^{-1} \le \sigma_i^2 \le 1 \\ \sigma_i^2 \left(1 + \frac{\sigma_i^2}{d}\right) & \text{if } 1 \le \sigma_i^2 \le d \end{cases}$$

Query complexity of Gaussian sampling from an O(1)-warm start: $d^2\sigma^2$

1. During $d^{-1} \leq \sigma_i^2 \leq 1$, needs $\widetilde{O}(d)$ phases for doubling of $\sigma_i^2 \to \#$ queries : $d \cdot d^2 \sigma^2 \leq d^3$

2. During $1 \le \sigma_i^2 \le d$, needs $\widetilde{O}(d/\sigma_i^2)$ phases for doubling $\rightarrow \#$ queries : $d/\sigma^2 \cdot d^2\sigma^2 \le d^3$

 \therefore Total query complexity through annealing: d^3

Wrap-up in the last phase

Wrap-up for uniform sampling in the last phase $\mu_k = \mathsf{N}(0, dI_d)|_{\kappa}$

Use the boosting for uniform sampling via LSI

$$_{K} \rightarrow \pi = \text{Unif}(K)$$

\rightarrow INO (or proximal sampler)'s complexity: $\widetilde{O}(d^2C_{1SI}) = \widetilde{O}(d^2D^2)$ in the last phase

Wrap-up in the last phase

Wrap-up for uniform sampling in the last phase $\mu_k = \mathsf{N}(0, dI_d)$

Better way?

<u>Rationale</u>: A log-concave dist. has a sub-exponential tail

$$_{K} \rightarrow \pi = \text{Unif}(K)$$

Can work with the uniform dist. $\hat{\pi}$ over a truncated body $K \cap B_{O(d^{1/2})}(0)$ due to $\mathscr{R}_{\infty}(\hat{\pi} \parallel \pi) = O(1)$

 $P_{\pi}(\|X - \mu\| \ge t\sqrt{d}) \le \exp(-t + 1)$ when $\mathbb{E}_{\pi}[\|X\|^2] = O(d)$

Wrap-up in the last phase

Wrap-up for uniform sampling in the last phase

 $\mu_k = \mathsf{N}(0, dI_d)$

After truncation by $B_{O(d^{1/2})}(0)$: $D = O(d^{1/2})$ so C

$$_{K} \rightarrow \pi = \text{Unif}(K)$$

$$C_{\text{LSI}}(\hat{\pi}) = O(D^2) = O(d)$$

 \therefore INO's complexity is d^3 for uniform sampling in the last phase

Putting together

1. Annealing through Gaussian

 $\widetilde{O}(d^3 \operatorname{pol}$

2. Uniform sampling in the last phase $\widetilde{O}(d^3 \operatorname{poly})$

 $\therefore \widetilde{O}(d^3 \operatorname{polylog} \frac{D}{\delta \varepsilon}) \text{ membership queries for uniform sampling with } \mathscr{R}_{\infty}\text{-guarantee}$

 \rightarrow Matches the prior best known complexity in TV [Cousin and Vempala'18]

$$\left(\text{lylog} \frac{D}{\delta} \right)$$
 queries

$$\operatorname{ylog} \frac{D}{\delta \varepsilon}$$
) queries

