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Hallucination in Diffusion Models

Diffusion Models generate strange artifacts
Hands with extra (or missing) fingers are commonly seen in generated images.
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Toy Experiment
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Let’s start with a simple toy experiment
Dataset of 3 shapes:

1. Triangle
2. Square
3. Pentagon

All 64x64 grayscale images

Atmost one occurrence of each shape.
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Let’s start with a simple toy experiment
Dataset of 3 shapes:

1. Triangle
2. Square
3. Pentagon

All 64x64 grayscale images

Atmost one occurrence of each shape.

Surprising?
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What are Diffusion Models?
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What are Diffusion Models?
Forward Process (Data to Noise): Perturbing an image with multiple scales of Gaussian noise.
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What are Diffusion Models?
Reverse Process (Noise to Data): Predict the noise added in the previous timestep

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
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Mode Interpolation
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Mode Interpolation: 1D Gaussian
Let’s start with a simple 1D Gaussian with mean 1.
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Mode Interpolation: 1D Gaussian
Consider a simple mixture of 1D Gaussians:  
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Mode Interpolation: 1D Gaussian
Consider a simple mixture of 1D Gaussians:  
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What is Mode Interpolation?
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What causes Mode 
Interpolation?
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What causes mode interpolation?
Diffusion models are score-based generative models

Score Function =
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What causes mode interpolation?
Diffusion models are score-based generative models

Score Function =

Ground truth score for 1D Mixture of 
Gaussians at various timesteps

At t=T (1000), the ground truth score 
would be same as the score of a isotropic 
Gaussian
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What causes mode interpolation?
Diffusion models smoothly approximates the true score function

Smooth approximation of 
the true score function, 
particularly around the 
regions between disjoint 
modes of the 
distribution.
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What causes mode interpolation?
Diffusion models smoothly approximates the true score function
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Mode Interpolation: 1D Gaussian
Rate of mode interpolation decreases as the number of training samples increases
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Mode Interpolation: 2D Gaussian
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Mode Interpolation: 2D Gaussian
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Mode Interpolation: 2D Gaussian
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Mode Interpolation: 2D Gaussian
Diffusion models choose to interpolate between nearest modes

32



Hallucination in Diffusion Models

What is happening in the case of shapes?
Interpolation happens in representation space
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Diffusion Models know when 
they Hallucinate
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Diffusion Models know when they Hallucinate
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Realistic Settings
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Let’s move on to realistic settings
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Let’s move on to realistic settings
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Hands Dataset

45
Afifi, Mahmoud. "11K Hands: Gender recognition and biometric identification using a large dataset of hand images." Multimedia Tools and Applications 78 (2019): 20835-20854.
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Hands Dataset
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Recursive Model Training
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Recursive Model Training
The internet is increasingly populated by more and more synthetic data.
Recursive training on synthetic data leads to mode collapse

Shumailov, I., Shumaylov, Z., Zhao, Y. et al. AI models collapse when trained on recursively generated data. Nature 631, 755–759 (2024). https://doi.org/10.1038/s41586-024-07566-y
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Recursive Model Training: Model Collapse
Past work has focused on model collapse without considering the interaction between the modes
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Alemohammad, Sina, et al. "Self-consuming generative models go mad." arXiv preprint arXiv:2307.01850 (2023).
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Recursive Model Training
Recursively training a DDPM on its own generated data using a square grid of 2D Gaussians
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Mitigating Hallucinations with Pre-emptive Detection

Filter out hallucinated samples using the metric before training on samples from the previous generation of 
the diffusion model

56



Hallucination in Diffusion Models

Mitigating Hallucinations with Pre-emptive Detection

Filter out hallucinated samples using the metric before training on samples from the previous generation of 
the diffusion model

57



Hallucination in Diffusion Models

Summary

● Introduce a failure-mode of diffusion models: mode interpolation

● Explanation of why mode interpolation occurs

● Metric to detect hallucinations in diffusion models

● Potential hypothesis for inaccurate modeling of hands/limbs in 
modern text-to-image generative models.

● Novel Perspective on the Recursive Training of Generative Models
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