Understanding Hallucinations in Diffusion Models through Mode Interpolation

Sumukh Aithal

Pratyush Maini

Zachary Lipton

Zico Kolter

NeurIPS 2024

Diffusion Models generate strange artifacts

Hands with extra (or missing) fingers are commonly seen in generated images.

Toy Experiment

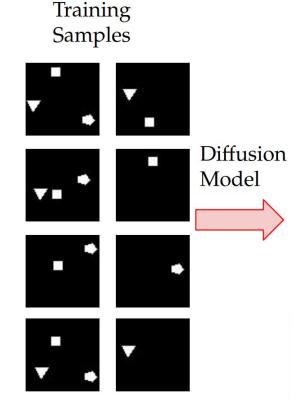
Let's start with a simple toy experiment

Dataset of 3 shapes:

- 1. Triangle
- 2. Square
- 3. Pentagon

All 64x64 grayscale images

Atmost one occurrence of each shape.



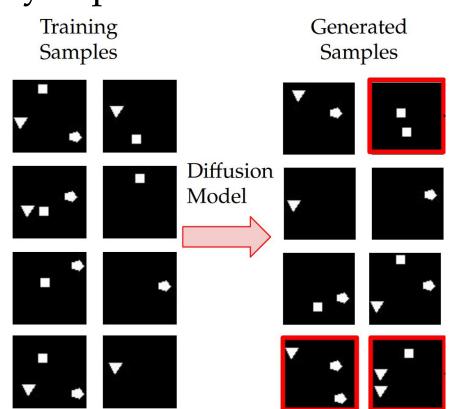
Let's start with a simple toy experiment

Dataset of 3 shapes:

- 1. Triangle
- 2. Square
- 3. Pentagon

All 64x64 grayscale images

Atmost one occurrence of each shape.



Let's start with a simple toy experiment

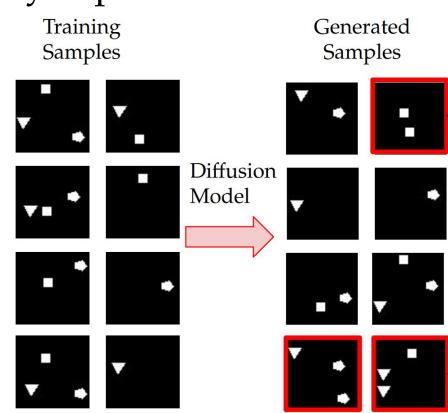
Dataset of 3 shapes:

- 1. Triangle
- 2. Square
- 3. Pentagon

All 64x64 grayscale images

Atmost one occurrence of each shape.

Surprising?



Forward Process (Data to Noise): Perturbing an image with multiple scales of Gaussian noise.

 \mathbf{x}_0 -

Forward Process (Data to Noise): Perturbing an image with multiple scales of Gaussian noise.

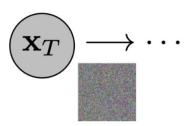
 \mathbf{x}_0

Forward Process (Data to Noise): Perturbing an image with multiple scales of Gaussian noise.

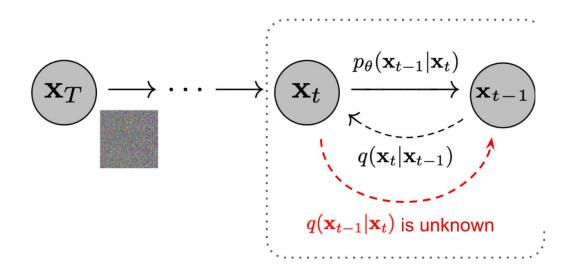
Forward Process (Data to Noise): Perturbing an image with multiple scales of Gaussian noise.

$$egin{aligned} q(\mathbf{x}_t|\mathbf{x}_{t-1}) &= \mathcal{N}(\mathbf{x}_t;\sqrt{1-eta_t}\mathbf{x}_{t-1},eta_t\mathbf{I}) \quad q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1}) \ q(\mathbf{x}_t|\mathbf{x}_0) &= \mathcal{N}(\mathbf{x}_t;\sqrt{ar{lpha}_t}\mathbf{x}_0,(1-ar{lpha}_t)\mathbf{I}) \end{aligned}$$

Reverse Process (Noise to Data): Predict the noise added in the previous timestep

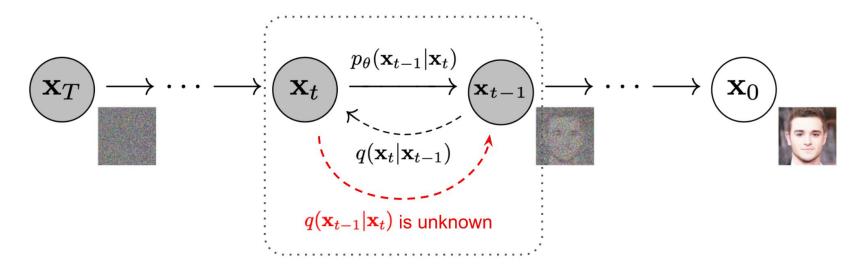


Reverse Process (Noise to Data): Predict the noise added in the previous timestep



https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

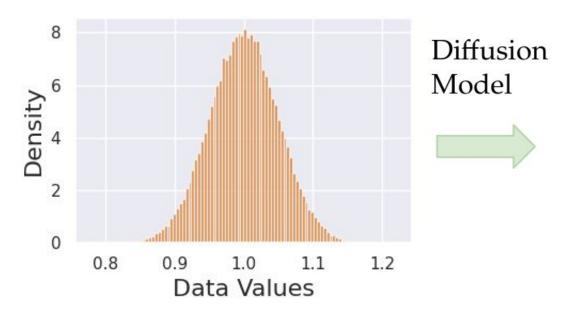
Reverse Process (Noise to Data): Predict the noise added in the previous timestep



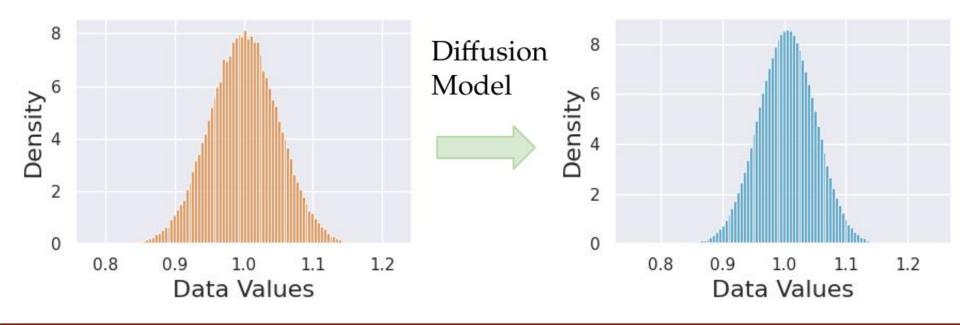
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Mode Interpolation

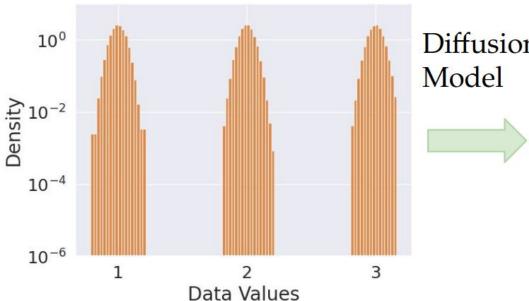
Let's start with a simple 1D Gaussian with mean 1.



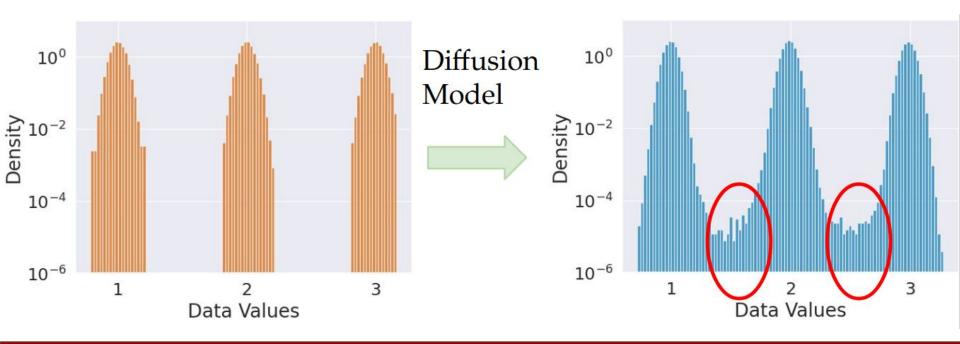
Let's start with a simple 1D Gaussian with mean 1.



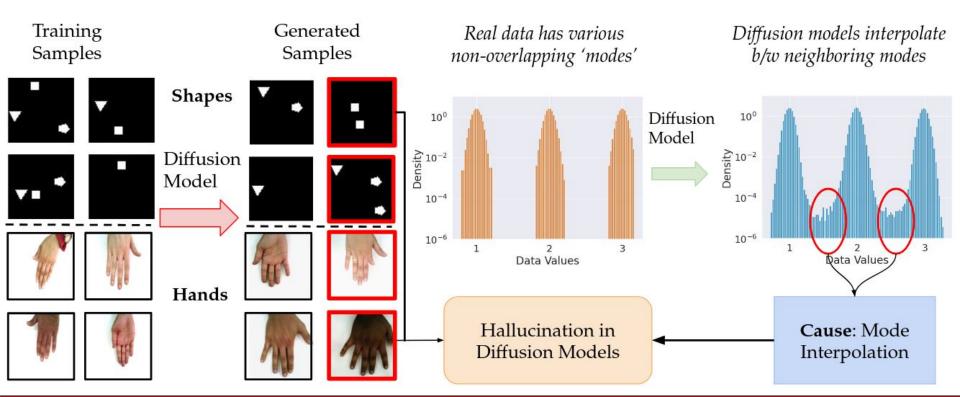
Consider a simple mixture of 1D Gaussians: $p(x) = \frac{1}{3}\mathcal{N}(\mu_1, \sigma^2) + \frac{1}{3}\mathcal{N}(\mu_2, \sigma^2) + \frac{1}{3}\mathcal{N}(\mu_3, \sigma^2)$



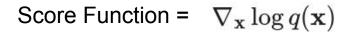
Consider a simple mixture of 1D Gaussians: $p(x) = \frac{1}{3}\mathcal{N}(\mu_1, \sigma^2) + \frac{1}{3}\mathcal{N}(\mu_2, \sigma^2) + \frac{1}{3}\mathcal{N}(\mu_3, \sigma^2)$

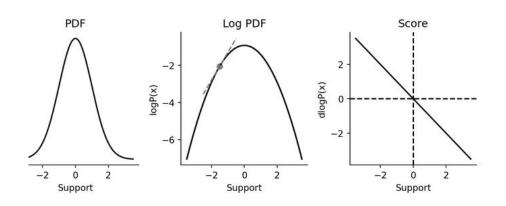


What is Mode Interpolation?

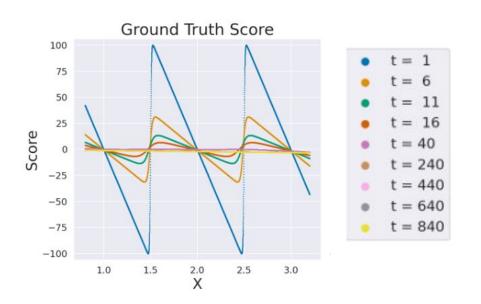


Diffusion models are score-based generative models





Diffusion models are score-based generative models

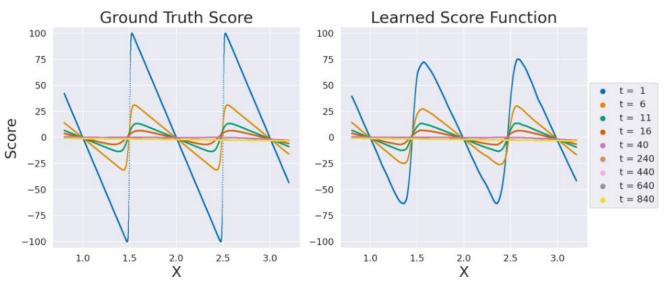


Score Function = $\nabla_{\mathbf{x}} \log q(\mathbf{x})$

Ground truth score for 1D Mixture of Gaussians at various timesteps

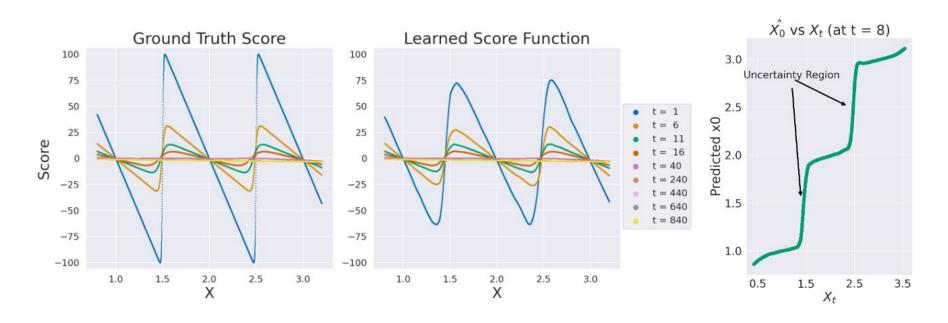
At t=T (1000), the ground truth score would be same as the score of a isotropic Gaussian

Diffusion models smoothly approximates the true score function

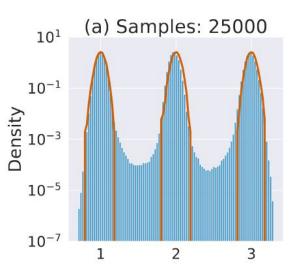


Smooth approximation of the true score function, particularly around the regions between disjoint modes of the distribution.

Diffusion models smoothly approximates the true score function

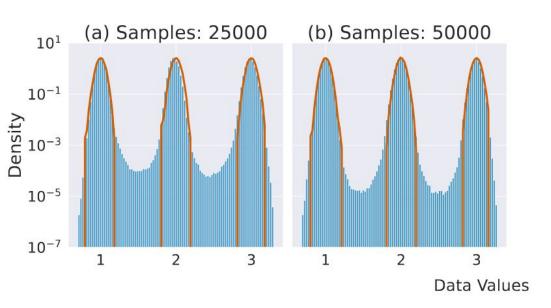


Rate of mode interpolation decreases as the number of training samples increases



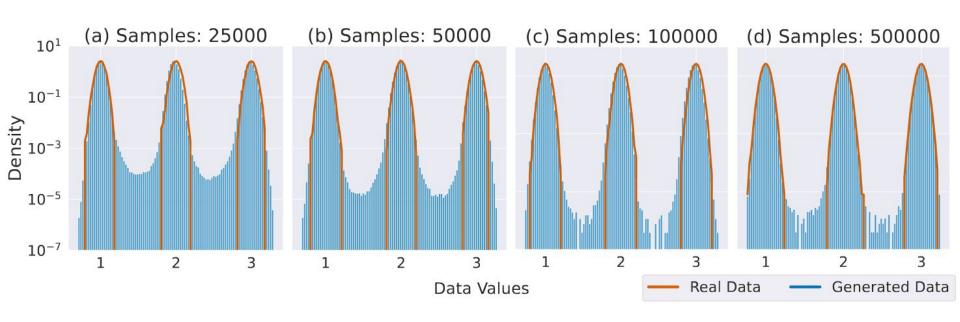
Data Values

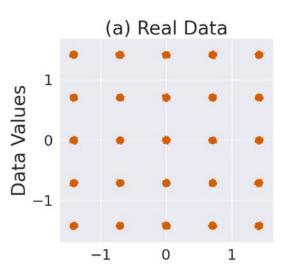
Rate of mode interpolation decreases as the number of training samples increases



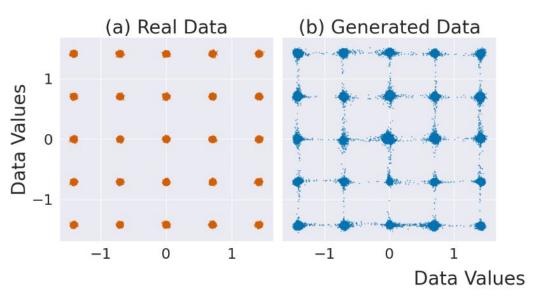


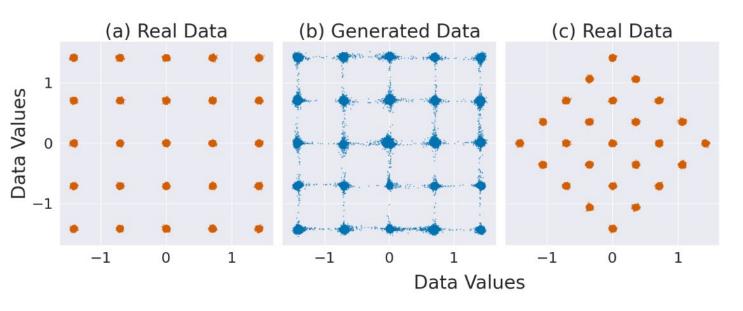
Rate of mode interpolation decreases as the number of training samples increases



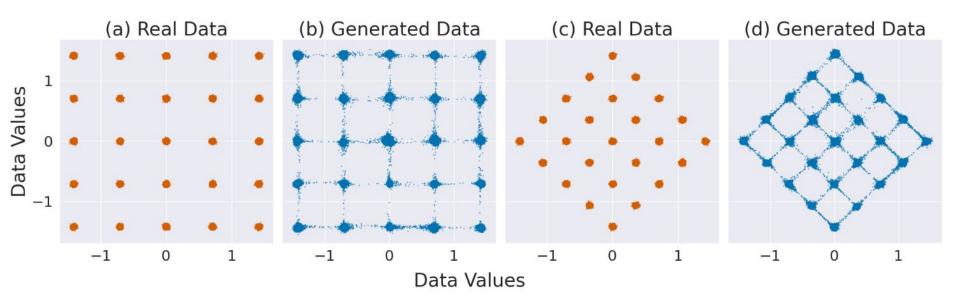


Data Values



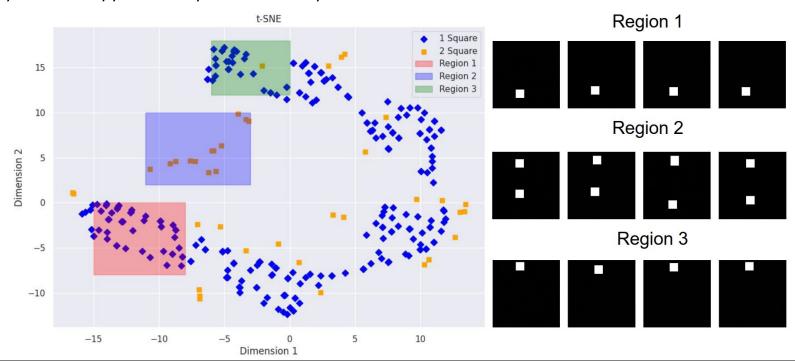


Diffusion models choose to interpolate between nearest modes



What is happening in the case of shapes?

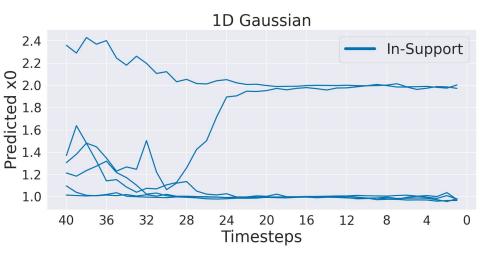
Interpolation happens in representation space

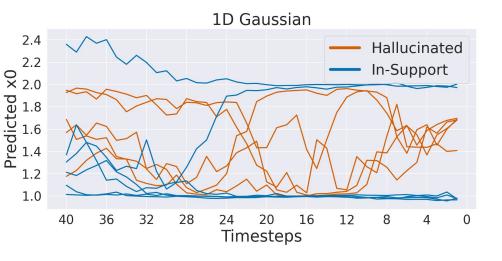


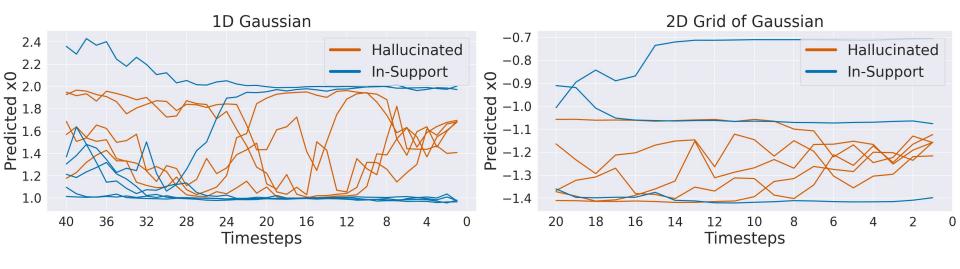
Diffusion Models know when they Hallucinate

Diffusion Models know when they Hallucinate

Diffusion Models know when they Hallucinate

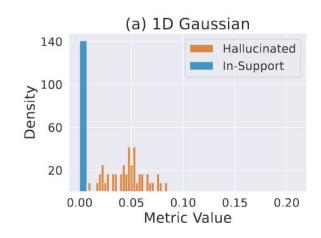




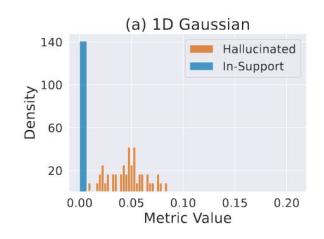


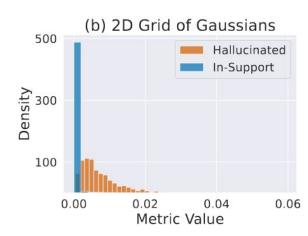
$$\text{Hal}(x) = \frac{1}{|T_2 - T_1|} \sum_{i=T_1}^{T_2} \left(\hat{x_0}^{(i)} - \overline{\hat{x_0}^{(t)}} \right)^2$$

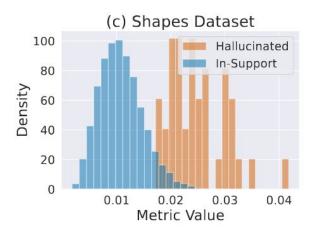
$$\mathtt{Hal}(x) = \frac{1}{|T_2 - T_1|} \sum_{i = T_1}^{T_2} \left(\hat{x_0}^{(i)} - \overline{\hat{x_0}^{(t)}} \right)^2$$



$$ext{Hal}(x) = rac{1}{|T_2 - T_1|} \sum_{i=T_1}^{T_2} \left(\hat{x_0}^{(i)} - \overline{\hat{x_0}^{(t)}} \right)^2$$







Realistic Settings

Let's move on to realistic settings

Let's move on to realistic settings

Run

FLUX.1 [schnell]

12B param rectified flow transformer distilled from <u>FLUX.1 [pro]</u> for 4 step generation [blog] [model]

image of a left hand placed on a wooden table. top view

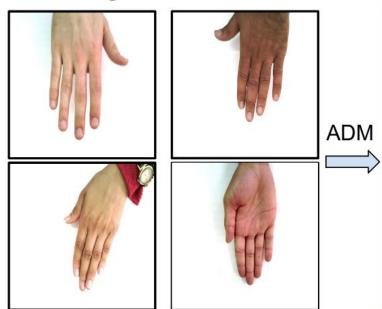
FLUX.1 [schnell]

12B param rectified flow transformer distilled from <u>FLUX.1 [pro]</u> for 4 step generation [blog] [model]

image of a right hand placed on a wooden table, top vie Run

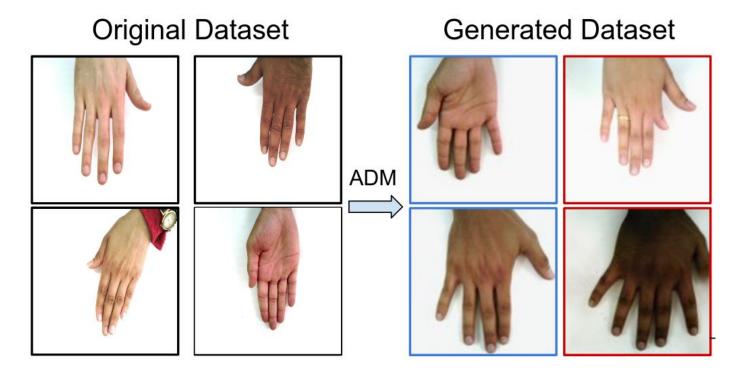
Hands Dataset

Original Dataset



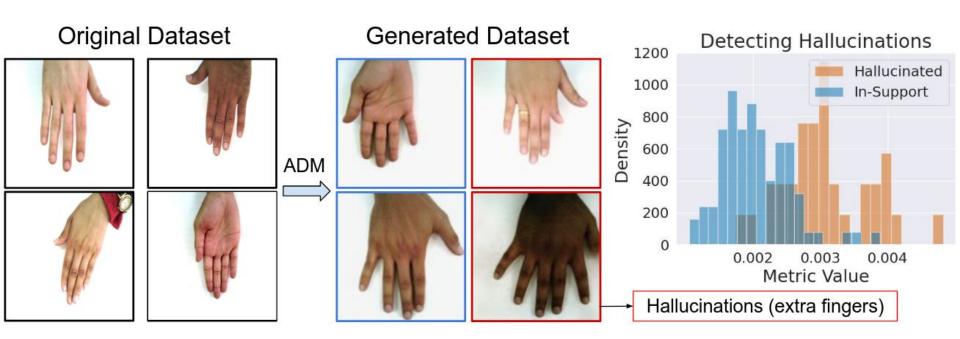
Afifi, Mahmoud. "11K Hands: Gender recognition and biometric identification using a large dataset of hand images." Multimedia Tools and Applications 78 (2019): 20835-20854.

Hands Dataset

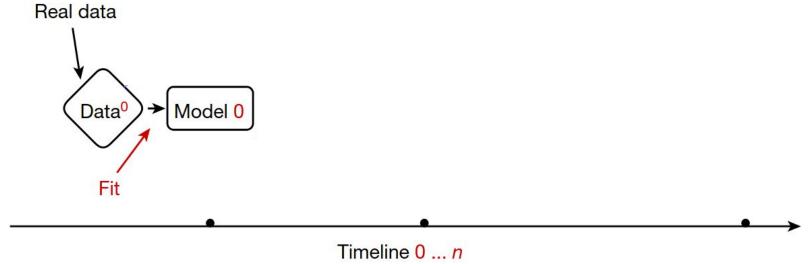


Afifi, Mahmoud. "11K Hands: Gender recognition and biometric identification using a large dataset of hand images." Multimedia Tools and Applications 78 (2019): 20835-20854.

Hands Dataset

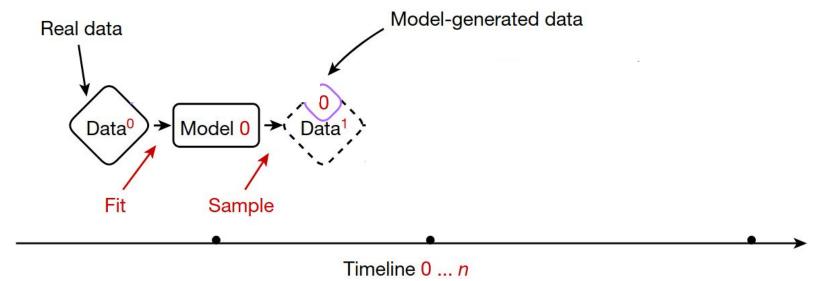


The internet is increasingly populated by more and more synthetic data. Recursive training on synthetic data leads to mode collapse



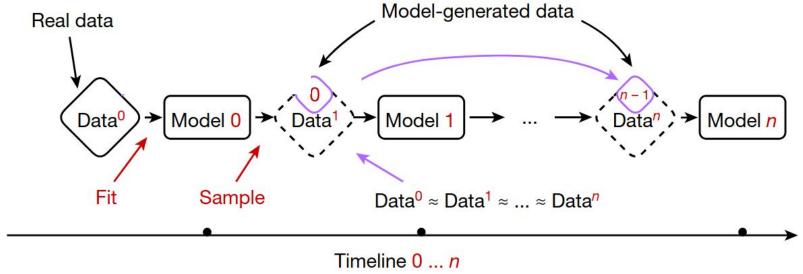
Shumailov, I., Shumaylov, Z., Zhao, Y. et al. Al models collapse when trained on recursively generated data. Nature 631, 755-759 (2024). https://doi.org/10.1038/s41586-024-07566-y

The internet is increasingly populated by more and more synthetic data. Recursive training on synthetic data leads to mode collapse



Shumailov, I., Shumaylov, Z., Zhao, Y. et al. Al models collapse when trained on recursively generated data. Nature 631, 755-759 (2024). https://doi.org/10.1038/s41586-024-07566-y

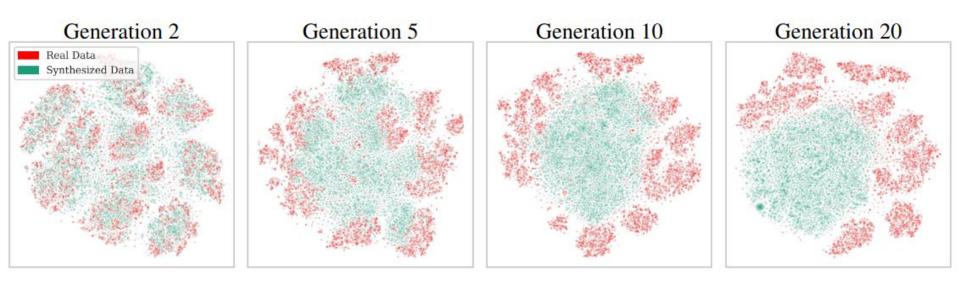
The internet is increasingly populated by more and more synthetic data. Recursive training on synthetic data leads to mode collapse



Shumailov, I., Shumaylov, Z., Zhao, Y. et al. AI models collapse when trained on recursively generated data. Nature 631, 755-759 (2024). https://doi.org/10.1038/s41586-024-07566-y

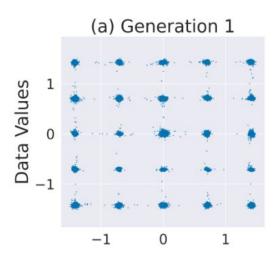
Recursive Model Training: Model Collapse

Past work has focused on model collapse without considering the interaction between the modes



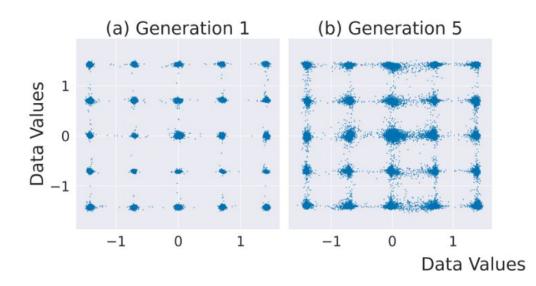
Alemohammad, Sina, et al. "Self-consuming generative models go mad." arXiv preprint arXiv:2307.01850 (2023).

Recursively training a DDPM on its own generated data using a square grid of 2D Gaussians

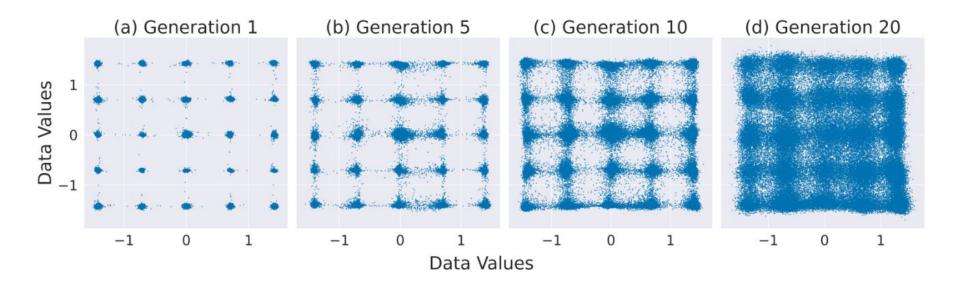


Data Values

Recursively training a DDPM on its own generated data using a square grid of 2D Gaussians

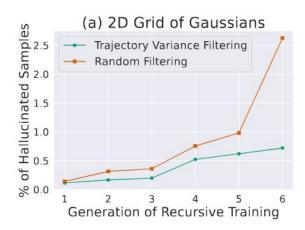


Recursively training a DDPM on its own generated data using a square grid of 2D Gaussians



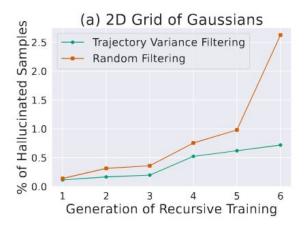
Mitigating Hallucinations with Pre-emptive Detection

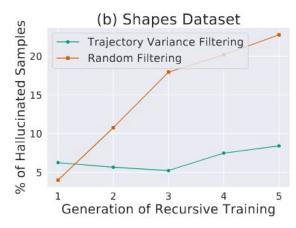
Filter out hallucinated samples using the metric before training on samples from the previous generation of the diffusion model

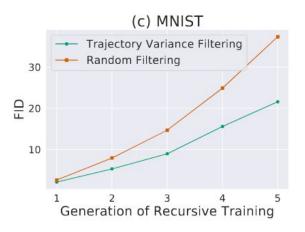


Mitigating Hallucinations with Pre-emptive Detection

Filter out hallucinated samples using the metric before training on samples from the previous generation of the diffusion model







Summary

- Introduce a failure-mode of diffusion models: mode interpolation
- Explanation of why mode interpolation occurs
- Metric to detect hallucinations in diffusion models
- Potential hypothesis for inaccurate modeling of hands/limbs in modern text-to-image generative models.
- Novel Perspective on the Recursive Training of Generative Models