

Learning 3D Equivariant Implicit Function with Patch-Level Pose-Invariant Representation

NeurIPS 2024

Xin Hu, Xiaole Tang, Ruixuan Yu, Jian Sun

Definition of Neural Vector Fields (NVF)

Given a sparse point cloud $X \in \mathbb{R}^{N_x \times 3}$ sampled on a shape X, and a query set $Q \in$ $\mathbb{R}^{N_q \times 3}$ sampled near the surface of X, where N_x and N_q represent the number of the input points and query points respectively.

A shape X is defined as the zero displacement of the implicit function $\mathcal F$

$$
\mathcal{X} = \{x \in \mathbb{R}^3 | \mathcal{F}(x) = \vec{0}\},\
$$

where x is a point in point cloud X, containing its spatial coordinate. $\vec{0}$ represents the zero displacement of point x .

Problem Statement for Equivariant Neural Vector Fields (NVF)

For a query point $q \in \mathbb{R}^3$, the implicit function $\mathcal F$ is formulated by

$$
\mathcal{F}(q) = \Delta q = \hat{x} - q, \quad \text{where } \hat{x} = \operatorname{argmin}_{x \in \mathcal{X}} ||x - q||,
$$

and \hat{x} is the nearest point of query q on the \hat{x} .

Definition 1 (Equivariant Implicit Function). Given an abstract group G **, the implicit** function $\mathcal F$ based on NVF is equivariant with regard to G , if

$$
\mathcal{F}(\zeta \circ q) = \zeta \circ \mathcal{F}(q) = \Delta q, \qquad \forall \zeta \in G,
$$

where q is a query point near or on the surface of X . In this work, the group G is $SE(3)$.

Local 3D patches may exhibit geometric similarity, but with different poses. When the pose is removed, these local regions appear repeatedly.

Patch-level Equivariant Implicit Function (PEIF)

- \triangleright Given a query point q, the corresponding patch for q on point cloud X is $P =$ $p_i\}_{i=0}^K$, i.e., the KNN of q based on Euclidean distance.
- \triangleright The patch P and query point q are normalized by patch-based pose normalization τ , obtaining *SE(3)*-invariant ones $\{\tau(P), \tau(q)\}.$
- \triangleright Taking $\{\tau(P), \tau(q)\}\$ as input, the displacement predictor D learns *SE(3)*-invariant representation and predicts the displacement $\Delta \bar{q}$.
- \triangleright This predicted displacement is transformed back to the pose of P with τ^{-1} .

➢ Pose Normalization

The patch P is first decentralized by subtracting the center μ of the points, then the rotation matrix U is obtained by computing the Singular Value Decomposition (SVD) over the covariance matrix $(P - \mu)^T (P - \mu)$. The pose-normalized patch \overline{P} and query point \bar{q} are obtained as follows:

$$
\overline{P} \triangleq \tau(P) = (P - \mu)U, \qquad \overline{q} \triangleq \tau(q) = (q - \mu)U.
$$

➢ Displacement Predictor Design

Taking the pose-normalized patch P and query \bar{q} as input, the displacement predictor D is designed to predict the displacement $\Delta \bar{q}$.

Spatial Relation Module:

$$
h_{\bar{q}} = \text{SRM}(\bar{P}, \bar{q})
$$

Patch Feature Extraction Module:

Intrinsic Patch Geometry Extractor:

$$
f_{\overline{q}}, \{f_{p_i}\}, f_{\overline{P}} = \mathrm{PFEM}(\overline{P}, \overline{q})
$$

$$
g_{\bar{P}}=\text{IPGE}(f_{\bar{P}})
$$

The displacement $\Delta \bar{q}$ for query point \bar{q} can then be derived by

$$
\Delta \overline{q} = \gamma_{\theta_d} \big(\gamma_{\theta_a} \big(h_{\overline{q}} \oplus f_{\overline{q}} \oplus \{ f_{p_i} \} \big) \oplus g_{\overline{p}} \big).
$$

➢ Pose Denormalization

The final *SE(3)*-equivariant displacement is obtained by transforming back $\Delta \bar{q}$ with pose denormalization

$$
\Delta q = \tau^{-1}(\Delta \overline{q}).
$$

Experiments

Experiments

Experiments

Tank You!