Debiasing Synthetic Data Generated by Deep Generative Models

Alexander Decruyenaere*, Heidelinde Dehaene*, Paloma Rabaey, Johan Decruyenaere, Christiaan Polet, Thomas Demeester & Stijn Vansteelandt

* Joint first authors

Background

Alongside great opportunities, great precaution should be taken regarding the possible sensitive nature of medical data and related privacy concerns.

Synthetic data are artificial data that mimic the original data in terms of statistical properties. As such, synthetic data might be able to replace the original data in statistical analysis, while **preserving the privacy** of the individual members of the original dataset.

Problem statement

The use of deep generative models (DGMs) for synthetic data generation induces considerable bias and imprecision into synthetic data analyses, inflating the type 1 error rate. This compromises their inferential utility as opposed to original data analysis, even for simple parameters like the population mean [3].

Prior approaches only consider the extra uncertainty arising from a parametric data generation strategy. This is however **insufficient when data-adaptive methods (such as DGMs) are used** to generate synthetic data, as they overlook the effects of regularization bias prevalent in DGMs ^[3].

Data-adaptive methods cannot succeed to estimate all features of the data-generating distribution well and are designed to optimize the prediction error instead of the error in the estimator [1,5,2,4]. This leads to **excess variability** and **slow convergence**, which are not addressed in previous methods for synthetic data analysis.

Repeated sampling variability

Original data uncertainty

Minimal synthetic data uncertainty

Additional synthetic data uncertainty

DAG simulation

DAG used to generate original population:

Notation & Set-Up

Methodology

We use 2 von Mises expansions to study the **difference** between $\theta(\tilde{P}_m)$ and $\theta(P)$. We show that this reduces to:

$$\theta(\tilde{P}_m) - \theta(P) = \frac{1}{m} \sum_{i=1}^{m} \emptyset(S_i, \hat{P}_n) - \frac{1}{m} \sum_{i=1}^{m} \emptyset(S_i, \tilde{P}_m) + o_p(m^{-1/2})$$

$$+ \frac{1}{n} \sum_{i=1}^{n} \emptyset(O_i, P) - \frac{1}{n} \sum_{i=1}^{n} \emptyset(O_i, \hat{P}_n) + o_p(n^{-1/2})$$

where $\emptyset(.,P)$ is the efficient influence curve (EIC) or the functional derivative of $\theta(P)$. We identify 2 problematic **bias** terms:

Origin: the use of data-adaptive estimates.

Solution to make this zero: analyse synthetic data with **debiased estimators**, derived from the EIC ^[5].

Origin: the use of a DGM to obtain \widehat{P}_n .

Solution to make this zero: shift the variable of interest in the synthetic data. Can be done for all pathwise differentiable parameters, but the exact implementation depends on the EIC.

Example for the population mean with $\emptyset(O, P) = O - \theta(P)$

$$\theta(\tilde{P}_m) = \frac{1}{n} \sum_{i=1}^m S_i$$

Add $\bar{O} - \theta(\hat{P}_n)$ to S_i where $\theta(\hat{P}_n)$

is approximated based on the DGM.

Results

- . SE of estimators converge at approximately root-*n* rates.
- 2. Results in **empirical coverage levels** for the 95% CI that in most cases **approximate the nominal level**.

References

[1] Bickel, P., Klaassen, C., Ritov, Y., and Wellner, J. (1993). *Efficient and Adaptive Estimation for Semiparametric Models*, volume 4. Baltimore Johns Hopkins University Press.

[2] Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., and Robins, J. (2018). Double/debiased machine learning for treatment and structural parameters. *The Econometrics Journal*, (21(1):C1-C68.

[3] Decruyenaere, A., Dehaene, H., Rabaey, P., Polet, C., Decruyenaere, J., Vansteelandt, S., and Demeester, T. (2024). The real deal behind the artificial appeal: Inferential utility of tabular synthetic data. In *The 40th Conference on Uncertainty in Artificial Intelligence*.

[4] Hines, O., Dukes, O., Diaz-Ordaz, K., and Vansteelandt, S. (2022). Demystifying statistical learning based on efficient influence functions. *American Statistician*, 76(3):292–304.

[5] van der Laan, M. J. and Rose, S. (2011). *Targeted Learning*. Springer Series in Statistics. Springer New York. New York. NY.

Alexander.Decruyenaere@ugent.be

Heidelinde.Dehaene@ugent.be

