

Incorporating Surrogate Gradient Norm to Improve Offline Optimization Techniques

Manh Cuong Dao¹, Phi Le Nguyen¹, Thao Nguyen Truong², Trong Nghia Hoang³

Problem Definition

- Find a design x that maximizes certain desirable properties.
	- For instance:
		- Find a DNA sequence with maximum binding affinity.
- However, evaluation $g(x)$ is prohibitively expensive.
	- For instance:
		- Expensive laboratory experiment to measure binding affinity.

• **Offline Model-based Optimization (MBO):** Given an offline dataset $\mathfrak{D} = (x_i, z_i)_{i=1}^n$ where $z_i = g(x_i)$ with $g(.)$ is an **unknown** oracle function, find

$$
x_* = \operatorname*{argmax}_{x \in \mathcal{X}} g(x)
$$

[1] Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-bench: Benchmarks for data-driven offline model-based optimization. In International Conference on Machine Learning, pages 21658–21676. PMLR, 2022.

A direct approach to MBO

• Learn a surrogate $q(x; \omega_*)$ of $q(x)$ via fitting to the offline dataset.

 $\boldsymbol{\omega}_{*} = \operatorname{argmin} \mathcal{L}_{\mathfrak{D}}(\boldsymbol{\omega})$ ω

• The (oracle) maxima of $g(x)$ is then approximated via:

$$
x_* = \operatorname*{argmax}_x g(x; \boldsymbol{\omega}_*)
$$

• **Challenge:** Predictions of $g(x; \omega_*)$ are **unreliable** in OOD regime.

[2] Brandon Trabucco, Aviral Kumar, Xinyang Geng, and Sergey Levine. Conservative objective models for effective offline model-based optimization. In International Conference on Machine Learning, pages 10358–10368. PMLR, 2021.

Motivation

Motivation

Find surrogate s.t. worst-case prediction change across the perturbation neighborhood is sufficiently small.

Surrogate sharpness

• **Surrogate sharpness:**

$$
\mathcal{R}_{\chi}(\boldsymbol{\omega}) = \max_{\|\boldsymbol{\delta}\|_2 < \rho} \left[\mathbb{E}_{\chi \in \chi} \left[g(x; \boldsymbol{\omega} + \boldsymbol{\delta}) \right] - \mathbb{E}_{\chi \in \chi} \left[g(x; \boldsymbol{\omega}) \right] \right]
$$

• This can be used to regularize surrogate training:

Surrogate sharpness

• We proved in Theorem 2 that

$$
\mathcal{R}_{\chi}(\boldsymbol{\omega}) \leq \left(\rho G(\boldsymbol{\omega}) + \frac{1}{2} \rho^2 \lambda_{max} \right) \cdot \left(\mathcal{R}_{\mathcal{D}}(\boldsymbol{\omega}) + \mathcal{O} \left(\sqrt{\frac{\dim(\boldsymbol{\omega}) \log(n \|\boldsymbol{\omega}\|^2)}{n}} \right) \right)
$$

where $G(\boldsymbol{\omega}) = ||E_{\chi \in \chi}[\nabla_{\boldsymbol{\omega}} g(x; \boldsymbol{\omega})]||$ and λ_{max} is largest eigenvalue of Hessian of the surrogate's expected prediction.

This can transform the constraint:

$$
\boldsymbol{\omega}_{*} = \underset{\boldsymbol{\omega}}{\operatorname{argmin}} \mathcal{L}_{\mathfrak{D}}(\boldsymbol{\omega}) \quad \text{s.t.} \quad \mathcal{R}_{\mathcal{D}}(\boldsymbol{\omega}) \leq \epsilon
$$

Practical Algorithms

- Let $h(\boldsymbol{\omega} + \boldsymbol{\delta}) = \mathbb{E}_{\boldsymbol{x} \in \mathcal{D}}[g(\boldsymbol{x}; \boldsymbol{\omega} + \boldsymbol{\delta})], h(\boldsymbol{\omega}) = \mathbb{E}_{\boldsymbol{x} \in \mathcal{D}}[g(\boldsymbol{x}; \boldsymbol{\omega})]$
- Use first-order **Taylor expansion** of $h(\omega + \delta)$ at ω : $\mathcal{R}_{\mathcal{D}}(\boldsymbol{\omega}) = \max_{\|\mathcal{S}\| \ \mathcal{L}}$ $\left.\delta\right\|_2<\!\rho$ $\mathbb{E}_{x \in \mathcal{D}}[g(x; \boldsymbol{\omega} + \boldsymbol{\delta})] - \mathbb{E}_{x \in \mathcal{D}}[g(x; \boldsymbol{\omega})]$ $=$ max $\left.\delta\right\|_2<\!\rho$ $|h(\boldsymbol{\omega} + \boldsymbol{\delta}) - h(\boldsymbol{\omega})| \approx \max_{\boldsymbol{\omega} \in \mathbb{R}^d}$ $\left.\delta\right\|_2<\!\rho$ $\nabla_{\boldsymbol{\omega}} h(\boldsymbol{\omega})^T \boldsymbol{\delta}$
- Use the **Cauchy-Schwartz** inequality:

 $\mathcal{R}_{\mathcal{D}}(\boldsymbol{\omega}) \approx \max_{\|\mathbf{x}\| \leq \epsilon}$ $\left.\delta\right\|_2<\!\rho$ $\nabla_{\boldsymbol{\omega}} h(\boldsymbol{\omega})^T \boldsymbol{\delta}$ = $\max_{\|\boldsymbol{\delta}\| \leq \epsilon}$ $\left.\delta\right\|_2<\!\rho$ $\nabla_{\boldsymbol{\omega}}h(\boldsymbol{\omega})||.||\boldsymbol{\delta}|| = \rho.||\nabla_{\boldsymbol{\omega}}h(\boldsymbol{\omega})$

• Surrogate training can be rewritten as:

$$
\boldsymbol{\omega}_{*} = \operatorname*{argmin}_{\boldsymbol{\omega}} \mathcal{L}_{\mathfrak{D}}(\boldsymbol{\omega}) \quad \text{s.t.} \quad \rho. \left\| \nabla_{\boldsymbol{\omega}} h(\boldsymbol{\omega}) \right\| \leq \epsilon
$$

• This can be solved via **Lagrangian**:

$$
\boldsymbol{\omega}_{*} = \operatorname*{argmin}_{\boldsymbol{\omega}} \mathcal{L}(\boldsymbol{\omega}, \lambda) \quad \text{where} \quad \mathcal{L}(\boldsymbol{\omega}, \lambda) = \mathcal{L}_{\mathfrak{D}}(\boldsymbol{\omega}) + \lambda (\rho. \|\nabla_{\boldsymbol{\omega}} h(\boldsymbol{\omega})\| - \epsilon)
$$

Practical Algorithms

- Utilize the **basic differential multiplier method** (**BDMM**)[3], which simultaneously**:**
	- Gradient descent for ω :

$$
\boldsymbol{\omega}^{t+1} = \boldsymbol{\omega}^t - \eta_{\boldsymbol{\omega}}. (\nabla_{\boldsymbol{\omega}} \mathcal{L}_{\mathfrak{D}}(\boldsymbol{\omega}) + \lambda^t. \rho. \nabla_{\boldsymbol{\omega}} || \nabla_{\boldsymbol{\omega}} h(\boldsymbol{\omega}^t) ||)
$$

• Gradient ascent for λ :

$$
\lambda^{t+1} = \lambda^t + \eta_{\lambda}.\left(\rho.\|\nabla_{\omega}h(\omega)\| - \epsilon\right)
$$

Experiments

IMPROVE:

- $79.55\% = 35/44 \text{ cases}$
- Average improvement: 1.91%
- Peak improvement: 9.6%.

DECREASE:

- $9.09\% = 4/44 \text{ cases}$
- Average degradation: 0.3%
- Peak degradation: 0.7%.

MAINTAIN:

• $11.36\% = 5/44 \text{ cases}$

