Zipper: Addressing Degeneracy in Algorithm-Agnostic Inference

Geng Chen, Yinxu Jia, Guanghui Wang, Changliang Zou

Nankai University

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Outline

[Introduction](#page-2-0)

[Our Remedy](#page-9-0)

[Finite-Sample Experiments](#page-17-0)

[Synthetic Experiments](#page-18-0) [Real Data Examples](#page-23-0)

Kロトメ部トメミトメミト ミニのQC

[Concluding Remarks](#page-27-0)

Outline

[Introduction](#page-2-0)

[Our Remedy](#page-9-0)

[Finite-Sample Experiments](#page-17-0)

[Synthetic Experiments](#page-18-0) [Real Data Examples](#page-23-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Concluding Remarks](#page-27-0)

Goodness-of-Fit Testing via Predictiveness Comparison

- ▶ Due to the popularity of black box prediction methods like random forests and deep neural networks, there has been a growing interest in the so-called "algorithm" (or model)-agnostic" inference on the goodness-of-fit (GoF) in regression.
- ▶ This framework aims to assess the appropriateness of a given model for prediction compared to a potentially more complex (often higher-dimensional) model.

Goodness-of-Fit Testing via Predictiveness Comparison

- ▶ Response: $Y \in \mathbb{R}$; Covariates $X \in \mathbb{R}^p$; $(Y, X) \sim P$.
- ▶ Define $\mathbb{C}(\tilde{f}, P)$ to quantify predictive capability of $\tilde{f} \in \mathcal{F}$.
- ▶ Optimal function: $f \in \arg \max_{\tilde{f} \in \mathcal{F}} \mathbb{C}(\tilde{f}, P)$.

▶ Examples:

- ▶ (Negative) squared loss: $\mathbb{C}(\tilde{f}, P) = -E[\{Y \tilde{f}(X)\}^2]$.
- ▶ (Negative) cross-entropy loss: $\mathbb{C}(\tilde{f}, P) = E[Y \log \tilde{f}(X) + (1 Y) \log\{1 \tilde{f}(X)\}]$.
- \triangleright GoF testing involves two classes of functions: F and subset \mathcal{F}_S .
- ▶ Dissimilarity measure: $\psi_{\mathcal{S}} = \mathbb{C}(f, P) \mathbb{C}(f_{\mathcal{S}}, P)$, where $f_{\mathcal{S}} \in \argmax_{\tilde{f} \in \mathcal{F}_{\mathcal{S}}} \mathbb{C}(\tilde{f}, P)$.

$$
H_0: \psi_{\mathcal{S}} = 0 \quad \text{versus} \quad H_1: \psi_{\mathcal{S}} > 0.
$$

Goodness-of-Fit Testing via Predictiveness Comparison

- ▶ Specification Testing: Evaluates the adequacy of a class of models (e.g., parametric models) by testing if $E(Y | X) = g_{\theta}(X)$ holds almost surely. In this context, $\mathcal F$ is an unrestricted class, and $\mathcal F_S$ represents parametric models.
- ▶ Model Selection: Used to identify the superior predictive model from candidates, often comparing an unregularized model to a regularized one. Testing H_0 assesses if a regularizer improves predictions.
- \triangleright Variable Importance Measure: Evaluates the significance of a covariate group U in predicting the response Y , with $X=(U^\top,V^\top)^\top.$ This can be expressed in the GoF framework by defining \mathcal{F}_S to exclude U.

The Degeneracy Issue

The null hypothesis H_0 : $\psi_s = 0$ poses challenges due to degeneracy [\(Verdinelli and](#page-29-0) [Wasserman, 2024;](#page-29-0) [Dai et al., 2024;](#page-29-1) [Williamson et al., 2023\)](#page-29-2).

- ▶ Consider testing if $\mu := E(Y) = 0$ with $\mathcal{F} = \mathbb{R}$ and $\mathcal{F}_S = \{0\}.$ Using squared loss, $\psi_{\mathcal{S}} = E(Y^2) - E\{(Y-\mu)^2\} = \mu^2.$
- \blacktriangleright The estimator based on sample-splitting is $\psi_{n,S} = 2 \bar{Y}_n^{\text{te}} \bar{Y}_n^{\text{tr}} - (\bar{Y}_n^{\text{tr}})^2.$
- ▶ When $\mu \neq 0$, $\sqrt{n}(\psi_{n,S} \mu)$ is asymptotically normal. However, under H_0 , $\sqrt{n}\psi_{n,\mathcal{S}} = O_P(n^{-1/2})$,

indicating degeneracy.

 \triangleright While inference at a *n*-rate is feasible in this simple case, degeneracy poses challenges for more complex models and black box algorithms.

Figure: Empirical distribution of $\sqrt{n}\psi_{n,\mathcal{S}}$ scaled by its standard deviation (black histograms) compared to normal distribution (red lines).KID KA KERKER KID KO

Existing Solutions

- ▶ Sample Splitting: [Williamson et al. \(2023\)](#page-29-2) additionally split the testing data to evaluate the nondegenerate influence functions of $\mathbb{C}(f, P)$ and $\mathbb{C}(f_S, P)$ separately under H_0 . However, this reduce sample size and significantly lower power.
- ▶ Data Perturbation: [Rinaldo et al. \(2019\)](#page-29-3) and [Dai et al. \(2024\)](#page-29-1) proposed adding independent zero-mean noise to empirical influence functions. However, determining the right amount of perturbation remains a heuristic process.
- ▶ Standard Error Expansion: [Verdinelli and Wasserman \(2024\)](#page-29-0) suggested expanding the standard error of the estimator to mitigate the effects of degeneracy.

Our Contributions

- ▶ We introduce the Zipper device for algorithm-agnostic inference under the null hypothesis H_0 of equal goodness.
- ▶ Our approach utilizes overlapping testing splits with a *slider* parameter $\tau \in [0, 1)$, enhancing data efficiency and significantly improving power while ensuring valid size control.

Outline

[Introduction](#page-2-0)

[Our Remedy](#page-9-0)

[Finite-Sample Experiments](#page-17-0)

[Synthetic Experiments](#page-18-0) [Real Data Examples](#page-23-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Concluding Remarks](#page-27-0)

The Zipper Device

- ▶ Randomly partition data into K folds, $\mathcal{D}_1, \ldots, \mathcal{D}_K$, with estimators $f_{k,n}$ and $f_{k,n,S}$ for f and f_s constructed from data excluding fold \mathcal{D}_k .
- ▶ Split D_k into two overlapping sets $D_{k,A}$ and $D_{k,B}$, adjusting the overlap proportion through $\tau = |\mathcal{D}_{k,o}|/|\mathcal{D}_{k,A}|$.

▶ Construct estimators $\mathbb{C}_{k,n}$ and $\mathbb{C}_{k,n,S}$ for $\mathbb{C}(f, P)$ and $\mathbb{C}(f, S, P)$ using $(f_{k,n}, \mathcal{D}_{k,A})$ and $(f_{k,n,S}, \mathcal{D}_{k,B})$.

The estimator of
$$
\psi_{\mathcal{S}}
$$
 is $\psi_{n,\mathcal{S}} = K^{-1} \sum_{k=1}^{K} (\mathbb{C}_{k,n} - \mathbb{C}_{k,n,\mathcal{S}}).$

The Zipper Device

 \triangleright $\tau = 0$: aligns the vanilla sample splitting method [\(Williamson et al., 2023;](#page-29-2) [Dai](#page-29-1) [et al., 2024\)](#page-29-1).

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright $\tau = 1$: $\mathcal{D}_{k,o} = \mathcal{D}_{k,A} = \mathcal{D}_{k,B} = \mathcal{D}_k$, leading to the degeneracy under H_0 [\(Williamson et al., 2023\)](#page-29-2).

► Restrict the slider parameter $\tau \in [0, 1)$.

Asymptotic Linearity

Theorem (Asymptotic linearity)

If Conditions (C1)–(C4) hold for both tuples (P, F, f, f_{kn}) and (P, F_S , f_S, f_{kn,S}), then

$$
\psi_{n,S} - \psi_{S} = \frac{1}{n/(2-\tau)} \sum_{k=1}^{K} \bigg[\sum_{i: Z_{i} \in \mathcal{D}_{k,a}} \phi(Z_{i}) - \sum_{i: Z_{i} \in \mathcal{D}_{k,b}} \phi_{S}(Z_{i}) + \sum_{i: Z_{i} \in \mathcal{D}_{k,a}} \{\phi(Z_{i}) - \phi_{S}(Z_{i})\} \bigg] + o_{P}(n^{-1/2}),
$$

where $\phi(Z) = \mathbb{C}(f, P; \delta_Z - P)$ and $\phi_S(Z) = \mathbb{C}(f_S, P; \delta_Z - P)$. Here, $\mathbb{C}(\tilde{f}, P; h)$ represents the Gâteaux derivative of $\tilde{P} \mapsto \mathbb{C}(\tilde{f}, \tilde{P})$ at P in the direction h, and δ_z denotes the Dirac measure at z. Consequently, for any $\tau \in [0,1)$,

$$
\{n/(2-\tau)\}^{1/2}(\psi_{n,S}-\psi_{S})\stackrel{d}{\rightarrow}N(0,\nu_{S,\tau}^2)
$$

as $n \to \infty$, where $\nu^2_{\mathcal{S},\tau} = (1-\tau)(\sigma^2 + \sigma^2_{\mathcal{S}}) + \tau \eta^2_{\mathcal{S}}, \ \sigma^2 = E\{\phi^2(Z)\}, \ \sigma^2_{\mathcal{S}} = E\{\phi^2_{\mathcal{S}}(Z)\}, \ \text{and}$ $\eta_S^2 = E[\{\phi(Z) - \phi_S(Z)\}^2].$

Null Behaviors

▶ Use the plug-in principle to obtain the variance estimator $\nu_{n,S,\tau}^2$ for $\nu_{S,\tau}^2$ under H_0 .

▶ $\nu^2_{n,S,\tau}$ converges to $\nu^2_{S,\tau}$ as $n \to \infty$ under H_0 if Conditions (C4)–(C5) are satisfied.

 \blacktriangleright The normalized test statistic is given by

$$
T_{\tau} = \frac{\sqrt{n/(2-\tau)}\psi_{n,S}}{\nu_{n,S,\tau}}.
$$

Reject H₀ if $T_\tau > z_{1-\alpha}$ for a prespecified significance level α .

▶ Under H_0 , since $T_\tau \stackrel{d}{\to} N(0,1)$, Zipper ensures valid size control.

Power Analysis

Theorem (Power approximation)

Suppose the Conditions (C1)–(C5) hold for both tuples (P, F, f, $f_{k,n}$) and $(P, \mathcal{F}_S, f_S, f_{k,n,S})$. Then for any $\tau \in [0,1)$, the power function $Pr(T_{\tau} > z_{1-\alpha} | H_1) = G_{S,n,\alpha}(\tau) + o(1)$, where

$$
G_{S,n,\alpha}(\tau) = \Phi\left(-\frac{\nu_{S,\tau}^{(0)}}{\nu_{S,\tau}}z_{1-\alpha} + \frac{\{n/(2-\tau)\}^{1/2}\psi_{S}}{\nu_{S,\tau}}\right),\,
$$

 $\nu_{\mathcal{S},\tau}^{(0)}=\{(1-\tau)(\sigma^2+\sigma_{\mathcal{S}}^2)\}^{1/2}$ and Φ denotes the distribution function of $\mathcal{N}(0,1).$ Furthermore, if $Cov{\phi(Z), \phi_S(Z)} \geq 0$, then $G_{S,n,\alpha}(\tau)$ increases with τ .

Power Analysis

• Sample Splitting: At $\tau = 0$, the approximate power function is:

$$
G_{S,n,\alpha}(0) = \Phi\left(-z_{1-\alpha} + \frac{(n/2)^{1/2}\psi_S}{(\sigma^2 + \sigma_S^2)^{1/2}}\right).
$$

▶ Zipper: For $\tau \in [0,1)$, power function satisfies:

$$
G_{\mathcal{S},n,\alpha}(\tau) \stackrel{(i)}{\geq} \Phi\left(-z_{1-\alpha} + \frac{\{n/(2-\tau)\}^{1/2}\psi_{\mathcal{S}}}{(\sigma^2 + \sigma_{\mathcal{S}}^2)^{1/2}}\right) \stackrel{(ii)}{\geq} G_{\mathcal{S},n,\alpha}(0).
$$

▶ The power improvement of Zipper compared to sample splitting comes from

- \blacktriangleright the introduction of overlap mechanism τ (Inequality (ii)).
- if the utilization of variance estimator $\nu_{n,S,\tau}^2$ (lnequality (ii)).

Efficiency-and-Degeneracy Tradeoff

- ▶ To achieve better power while maintaining a reliable size, we propose a simple approach for selecting τ .
- ▶ To ensure a favorable normal approximation, we can choose the sample size $(1 - \tau)n/(2 - \tau)$ such that it meets a predetermined "large" sample size, such as $n_0 = 30$ or 50. Say, we can specify $\tau = \tau_0 := (n - 2n_0)/(n - n_0)$.

KORK ERKER ADAM ADA

 \triangleright In the case of very large *n*, a truncation may be needed to safeguard against degeneracy. For example, we can set $\tau = \min\{\tau_0, 0.9\}$.

Outline

[Introduction](#page-2-0)

[Our Remedy](#page-9-0)

[Finite-Sample Experiments](#page-17-0)

[Synthetic Experiments](#page-18-0) [Real Data Examples](#page-23-0)

Kロトメ部トメミトメミト ミニのQC

[Concluding Remarks](#page-27-0)

Variable Importance Assessment

- Models Considered:
	- ▶ Normal Response: $Y \sim N(X^{\top}\beta, \sigma_Y^2)$.
	- ▶ Binomial Response: $Y \sim \text{binom}(1, \text{logit}(X^\top \beta)).$
- \blacktriangleright Design Scenarios: $n = 500$.
	- ▶ Low-Dimensional: $p = 5$ with $\beta = (\delta, \delta, 5, 0, 5, 0_{p-5})^{\top}$.
	- ▶ High-Dimensional: $p = 1000$ with $\beta = (\delta, \delta, 5_{0.01p}, 0_{0.99p-2}^{\top})^{\top}$.
- **►** Test the significance of the first two variables given the significance level $\alpha = 5\%$.

$$
\blacktriangleright \tau = \min\{\tau_0, 0.9\} \text{ with } n_0 = 50.
$$

Table: Empirical sizes (in percentage) of various testing procedures, with standard deviations in brackets.

Figure: Empirical power of various testing methods as a function of the magnitude $δ$. The dot-dashed horizontal line represents the intercept at $\alpha = 5\%$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Model Specification Testing

$$
\blacktriangleright \ \ Y = X\beta + \varepsilon, \text{ where } ||\beta||_0 = 2.
$$

▶ $H_0: \beta = (*, *, 0_{p-2})^\top$ vs $H_1: ||\beta||_0 = 2$ but not H_0 (with $*$ as any nonzero value).

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

▶ Scenarios:

► (i)
$$
\beta = (0.4, 0.4, 0_{p-2})^\top
$$
 (under H_0).

► (ii)
$$
\beta = (0.4, 0, 0.4, 0_{p-3})^{\top}
$$
 (under H_1).

► (iii)
$$
\beta = (0, 0, 0.4, 0.4, 0_{p-4})^\top
$$
 (under H_1).

▶ Estimation Methods:

- ▶ Best subset selection for $p = 5$.
- ▶ Abess [\(Zhu et al. \(2022\)](#page-29-4)) for $p = 1000$.

Table: Empirical sizes and powers (in percentage) for the model specification test, with standard deviations in brackets.

MNIST Handwritten Dataset

- \triangleright MNIST dataset consists of size-normalized and center-aligned handwritten digit images. Each image is represented as a 28×28 pixel grid ($p = 28^2 = 784$).
- \triangleright Focused on digits 7 and 9, resulting in $n = 14251$ images.
- \blacktriangleright Images divided into nine distinct regions. Conduct variable importance testing for each region while considering others.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- ▶ Employed a Convolutional Neural Network (CNN) for image analysis.
- **►** Set significance level for tests at $\alpha = 0.05/9$ using Bonferroni correction.

Figure: Hypothesis regions (blank squares) and important discoveries (squares filled in red) comparing the Zipper method (left column) with WGSC-3 (right column).

Bodyfat Dataset

- ▶ The bodyfat dataset [\(Penrose et al., 1985\)](#page-29-5) provides an estimate of body fat percentages obtained through underwater weighing, along with various body circumference measurements from a sample of $n = 252$ men.
- \triangleright Conduct variable importance tests for each body circumference while considering potential influences from essential attributes such as age, weight, and height.

- ▶ Employ the random forest for accurate regression function estimation.
- **►** Set significance level for tests at $\alpha = 0.05/10$ using Bonferroni correction.

Table: P-values obtained from the Zipper and WGSC-3 methods for each marginal test regarding the relevance of the body circumference.

- ▶ The Zipper method identifies both Abdomen and Hip as significant factors. In contrast, WGSC-3 suggests only Abdomen as important.
- A recent study by [Zhu et al. \(2023\)](#page-29-6) proposed the formula (Waist + Hip)/Height as a straightforward body fat evaluation index, which aligns with our findings.

Outline

[Introduction](#page-2-0)

[Our Remedy](#page-9-0)

[Finite-Sample Experiments](#page-17-0)

[Synthetic Experiments](#page-18-0) [Real Data Examples](#page-23-0)

[Concluding Remarks](#page-27-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Concluding Remarks

- ▶ We introduce Zipper, an effective tool for addressing degeneracy in algorithm/model-agnostic inference.
- \triangleright The mechanism of Zipper involves the recycling of data usage by constructing two overlapping data splits within the testing samples, which holds potential for independent exploration.

KORK ERKER ADAM ADA

▶ Furthermore, incorporating the Zipper device into large-scale comparisons to achieve error rate control warrants additional research.

Reference

- Dai, B., Shen, X., and Pan, W. (2024). Significance tests of feature relevance for a black-box learner. IEEE Transactions on Neural Networks and Learning Systems, 35(2):1898–1911.
- Penrose, K. W., Nelson, A., and Fisher, A. (1985). Generalized body composition prediction equation for men using simple measurement techniques. Medicine & Science in Sports & Exercise, 17(2):189.
- Rinaldo, A., Wasserman, L., and G'Sell, M. (2019). Bootstrapping and sample splitting for high-dimensional, assumption-lean inference. The Annals of Statistics, 47(6):3438–3469.
- Verdinelli, I. and Wasserman, L. (2024). Decorrelated variable importance. Journal of Machine Learning Research, 25(7):1–27.
- Williamson, B. D., Gilbert, P. B., Simon, N., and Carone, M. (2023). A general framework for inference on algorithm-agnostic variable importance. Journal of the American Statistical Association, 118(543):1645–1658.
- Zhu, J., Wang, X., Hu, L., Huang, J., Jiang, K., Zhang, Y., Lin, S., and Zhu, J. (2022). abess: A fast best-subset selection library in python and r. Journal of Machine Learning Research, 23(202):1-7.
- Zhu, Y., Maruyama, H., Onoda, K., Zhou, Y., Huang, Q., Hu, C., Ye, Z., Li, B., and Wang, Z. (2023). Body mass index combined with (waist $+$ hip)/height accurately screened for normal-weight obesity in chinese young adults. Nutrition, 108:111939.