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Goodness-of-Fit Testing via Predictiveness Comparison

▶ Due to the popularity of black box prediction methods like random forests and
deep neural networks, there has been a growing interest in the so-called “algorithm
(or model)-agnostic” inference on the goodness-of-fit (GoF) in regression.

▶ This framework aims to assess the appropriateness of a given model for prediction
compared to a potentially more complex (often higher-dimensional) model.



Goodness-of-Fit Testing via Predictiveness Comparison

▶ Response: Y ∈ R; Covariates X ∈ Rp; (Y ,X ) ∼ P.

▶ Define C(f̃ ,P) to quantify predictive capability of f̃ ∈ F .

▶ Optimal function: f ∈ argmaxf̃ ∈F C(f̃ ,P).

▶ Examples:

▶ (Negative) squared loss: C(f̃ ,P) = −E [{Y − f̃ (X )}2].
▶ (Negative) cross-entropy loss: C(f̃ ,P) = E [Y log f̃ (X ) + (1− Y ) log{1− f̃ (X )}].

▶ GoF testing involves two classes of functions: F and subset FS .

▶ Dissimilarity measure: ψS = C(f ,P)− C(fS ,P), where fS ∈ argmaxf̃ ∈FS
C(f̃ ,P).

H0 : ψS = 0 versus H1 : ψS > 0.



Goodness-of-Fit Testing via Predictiveness Comparison

▶ Specification Testing: Evaluates the adequacy of a class of models (e.g.,
parametric models) by testing if E (Y | X ) = gθ(X ) holds almost surely. In this
context, F is an unrestricted class, and FS represents parametric models.

▶ Model Selection: Used to identify the superior predictive model from candidates,
often comparing an unregularized model to a regularized one. Testing H0 assesses
if a regularizer improves predictions.

▶ Variable Importance Measure: Evaluates the significance of a covariate group U in
predicting the response Y , with X = (U⊤,V⊤)⊤. This can be expressed in the
GoF framework by defining FS to exclude U.



The Degeneracy Issue
The null hypothesis H0 : ψS = 0 poses challenges due to degeneracy (Verdinelli and
Wasserman, 2024; Dai et al., 2024; Williamson et al., 2023).

▶ Consider testing if µ := E (Y ) = 0 with F = R and
FS = {0}.
Using squared loss,
ψS = E (Y 2)− E{(Y − µ)2} = µ2.

▶ The estimator based on sample-splitting is
ψn,S = 2Ȳ te

n Ȳ tr
n − (Ȳ tr

n )2.

▶ When µ ̸= 0,
√
n(ψn,S − µ) is asymptotically

normal.
However, under H0,

√
nψn,S = OP(n

−1/2),
indicating degeneracy.

▶ While inference at a n-rate is feasible in this simple
case, degeneracy poses challenges for more complex
models and black box algorithms.

Figure: Empirical distribution of√
nψn,S scaled by its standard

deviation (black histograms)
compared to normal distribution (red
lines).



Existing Solutions

▶ Sample Splitting: Williamson et al. (2023) additionally split the testing data to
evaluate the nondegenerate influence functions of C(f ,P) and C(fS ,P) separately
under H0. However, this reduce sample size and significantly lower power.

▶ Data Perturbation: Rinaldo et al. (2019) and Dai et al. (2024) proposed adding
independent zero-mean noise to empirical influence functions. However,
determining the right amount of perturbation remains a heuristic process.

▶ Standard Error Expansion: Verdinelli and Wasserman (2024) suggested expanding
the standard error of the estimator to mitigate the effects of degeneracy.



Our Contributions

▶ We introduce the Zipper device for algorithm-agnostic inference under the null
hypothesis H0 of equal goodness.

▶ Our approach utilizes overlapping testing splits with a slider parameter τ ∈ [0, 1),
enhancing data efficiency and significantly improving power while ensuring valid
size control.
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The Zipper Device

▶ Randomly partition data into K folds, D1, . . . ,DK , with estimators fk,n and fk,n,S
for f and fS constructed from data excluding fold Dk .

▶ Split Dk into two overlapping sets Dk,A and Dk,B , adjusting the overlap
proportion through τ = |Dk,o |/|Dk,A|.

Dk,a: C(fk,n, Pk,n,a)

Dk,b: C(fk,n,S , Pk,n,b)

Dk,o: C(fk,n, Pk,n,o)

Dk,o: C(fk,n,S , Pk,n,o)

Dk,A

Dk,B

τ

▶ Construct estimators Ck,n and Ck,n,S for C(f ,P) and C(fS ,P) using (fk,n,Dk,A)
and (fk,n,S ,Dk,B).

▶ The estimator of ψS is ψn,S = K−1
∑K

k=1(Ck,n − Ck,n,S).



The Zipper Device

▶ τ = 0: aligns the vanilla sample splitting method (Williamson et al., 2023; Dai
et al., 2024).

▶ τ = 1: Dk,o = Dk,A = Dk,B = Dk , leading to the degeneracy under H0

(Williamson et al., 2023).

▶ Restrict the slider parameter τ ∈ [0, 1).



Asymptotic Linearity

Theorem (Asymptotic linearity)
If Conditions (C1)–(C4) hold for both tuples (P,F , f , fk,n) and (P,FS , fS , fk,n,S), then

ψn,S − ψS =
1

n/(2− τ)

K∑
k=1

[ ∑
i :Zi∈Dk,a

ϕ(Zi )−
∑

i :Zi∈Dk,b

ϕS(Zi )

+
∑

i :Zi∈Dk,o

{ϕ(Zi )− ϕS(Zi )}
]
+ oP(n

−1/2),

where ϕ(Z ) = Ċ(f ,P; δZ − P) and ϕS(Z ) = Ċ(fS ,P; δZ − P). Here, Ċ(f̃ ,P; h) represents the
Gâteaux derivative of P̃ 7→ C(f̃ , P̃) at P in the direction h, and δz denotes the Dirac measure
at z . Consequently, for any τ ∈ [0, 1),

{n/(2− τ)}1/2(ψn,S − ψS)
d→ N(0, ν2S,τ )

as n → ∞, where ν2S,τ = (1− τ)(σ2 + σ2
S) + τη2S , σ

2 = E{ϕ2(Z )}, σ2
S = E{ϕ2S(Z )}, and

η2S = E [{ϕ(Z )− ϕS(Z )}2].



Null Behaviors

▶ Use the plug-in principle to obtain the variance estimator ν2n,S,τ for ν2S,τ under H0.

▶ ν2n,S,τ converges to ν2S,τ as n → ∞ under H0 if Conditions (C4)–(C5) are satisfied.

▶ The normalized test statistic is given by

Tτ =

√
n/(2− τ)ψn,S
νn,S,τ

.

Reject H0 if Tτ > z1−α for a prespecified significance level α.

▶ Under H0, since Tτ
d→ N(0, 1), Zipper ensures valid size control.



Power Analysis

Theorem (Power approximation)

Suppose the Conditions (C1)–(C5) hold for both tuples (P,F , f , fk,n) and
(P,FS , fS , fk,n,S). Then for any τ ∈ [0, 1), the power function
Pr(Tτ > z1−α | H1) = GS,n,α(τ) + o(1), where

GS,n,α(τ) = Φ

−
ν
(0)
S,τ
νS,τ

z1−α +
{n/(2− τ)}1/2ψS

νS,τ

 ,

ν
(0)
S,τ = {(1− τ)(σ2 + σ2S)}1/2 and Φ denotes the distribution function of N(0, 1).
Furthermore, if Cov{ϕ(Z ), ϕS(Z )} ≥ 0, then GS,n,α(τ) increases with τ .



Power Analysis

▶ Sample Splitting: At τ = 0, the approximate power function is:

GS,n,α(0) = Φ

(
−z1−α +

(n/2)1/2ψS

(σ2 + σ2S)
1/2

)
.

▶ Zipper: For τ ∈ [0, 1), power function satisfies:

GS,n,α(τ)
(i)

≥ Φ

(
−z1−α +

{n/(2− τ)}1/2ψS

(σ2 + σ2S)
1/2

)
(ii)

≥ GS,n,α(0).

▶ The power improvement of Zipper compared to sample splitting comes from

▶ the introduction of overlap mechanism τ (Inequality (ii)).

▶ the utilization of variance estimator ν2n,S,τ (Inequality (ii)).



Efficiency-and-Degeneracy Tradeoff

▶ To achieve better power while maintaining a reliable size, we propose a simple
approach for selecting τ .

▶ To ensure a favorable normal approximation, we can choose the sample size
(1− τ)n/(2− τ) such that it meets a predetermined “large” sample size, such as
n0 = 30 or 50. Say, we can specify τ = τ0 := (n − 2n0)/(n − n0).

▶ In the case of very large n, a truncation may be needed to safeguard against
degeneracy. For example, we can set τ = min{τ0, 0.9}.
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Variable Importance Assessment

▶ Models Considered:

▶ Normal Response: Y ∼ N(X⊤β, σ2
Y ).

▶ Binomial Response: Y ∼ binom(1, logit(X⊤β)).

▶ Design Scenarios: n = 500.

▶ Low-Dimensional: p = 5 with β = (δ, δ, 5, 0, 5, 0p−5)
⊤.

▶ High-Dimensional: p = 1000 with β = (δ, δ, 50.01p, 0
⊤
0.99p−2)

⊤.

▶ Test the significance of the first two variables given the significance level α = 5%.

▶ τ = min{τ0, 0.9} with n0 = 50.



Table: Empirical sizes (in percentage) of various testing procedures, with standard deviations in
brackets.

Model p Zipper WGSC-3 DSP-Split WGSC-2 DSP-Pert

Normal
5 3.9(0.19) 5.1(0.22) 4.6(0.21) 0.1(0.03) 10.2(0.30)

1000 4.3(0.20) 6.2(0.24) 5.9(0.24) 16.7(0.37) 35.0(0.48)

Binomial
5 3.7(0.19) 3.9(0.19) 4.2(0.20) 0.6(0.08) 4.0(0.20)

1000 5.6(0.23) 4.8(0.21) 5.1(0.22) 19.9(0.40) 38.6(0.49)



Figure: Empirical power of various testing methods as a function of the magnitude δ. The
dot-dashed horizontal line represents the intercept at α = 5%.



Model Specification Testing

▶ Y = Xβ + ε, where ∥β∥0 = 2.

▶ H0 : β = (∗, ∗, 0p−2)
⊤ vs H1 : ∥β∥0 = 2 but not H0 (with ∗ as any nonzero value).

▶ Scenarios:

▶ (i) β = (0.4, 0.4, 0p−2)
⊤ (under H0).

▶ (ii) β = (0.4, 0, 0.4, 0p−3)
⊤ (under H1).

▶ (iii) β = (0, 0, 0.4, 0.4, 0p−4)
⊤ (under H1).

▶ Estimation Methods:

▶ Best subset selection for p = 5.

▶ Abess (Zhu et al. (2022)) for p = 1000.



Table: Empirical sizes and powers (in percentage) for the model specification test, with
standard deviations in brackets.

p 5 1000

Scenerio Zipper WGSC-3 DSP-Split WGSC-2 Zipper WGSC-3 DSP-Split WGSC-2

(i) 4.3(0.20) 6.2(0.22) 5.6(0.20) 0.0(0.00) 4.2(0.19) 5.5(0.20) 6.5(0.21) 16.6(0.36)
(ii) 96.9(0.17) 31.2(0.46) 34.9(0.46) 100.0(0.00) 94.2(0.22) 29.8(0.46) 31.4(0.46) 97.3(0.16)
(iii) 100.0(0.00) 81.4(0.39) 79.3(0.38) 100.0(0.00) 100.0(0.00) 81.3(0.40) 78.1(0.41) 100.0(0.00)



MNIST Handwritten Dataset

▶ MNIST dataset consists of size-normalized and center-aligned handwritten digit
images. Each image is represented as a 28× 28 pixel grid (p = 282 = 784).

▶ Focused on digits 7 and 9, resulting in n = 14251 images.

▶ Images divided into nine distinct regions. Conduct variable importance testing for
each region while considering others.

▶ Employed a Convolutional Neural Network (CNN) for image analysis.

▶ Set significance level for tests at α = 0.05/9 using Bonferroni correction.



Figure: Hypothesis regions (blank squares) and important discoveries (squares filled in red)
comparing the Zipper method (left column) with WGSC-3 (right column).



Bodyfat Dataset

▶ The bodyfat dataset (Penrose et al., 1985) provides an estimate of body fat
percentages obtained through underwater weighing, along with various body
circumference measurements from a sample of n = 252 men.

▶ Conduct variable importance tests for each body circumference while considering
potential influences from essential attributes such as age, weight, and height.

▶ Employ the random forest for accurate regression function estimation.

▶ Set significance level for tests at α = 0.05/10 using Bonferroni correction.



Table: P-values obtained from the Zipper and WGSC-3 methods for each marginal test
regarding the relevance of the body circumference.

Body Part Neck Chest Abdomen Hip Thigh Knee Ankle Biceps Forearm Wrist

Zipper 0.98 0.10 5.48× 10−10 4.01× 10−4 0.10 0.03 0.20 0.26 0.35 0.02
WGSC-3 0.12 0.01 9.30× 10−4 0.29 0.01 0.06 0.36 0.18 0.69 0.05

▶ The Zipper method identifies both Abdomen and Hip as significant factors. In
contrast, WGSC-3 suggests only Abdomen as important.

▶ A recent study by Zhu et al. (2023) proposed the formula (Waist + Hip)/Height
as a straightforward body fat evaluation index, which aligns with our findings.
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Concluding Remarks

▶ We introduce Zipper, an effective tool for addressing degeneracy in
algorithm/model-agnostic inference.

▶ The mechanism of Zipper involves the recycling of data usage by constructing two
overlapping data splits within the testing samples, which holds potential for
independent exploration.

▶ Furthermore, incorporating the Zipper device into large-scale comparisons to
achieve error rate control warrants additional research.
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