Zipper: Addressing Degeneracy in Algorithm-Agnostic Inference

Geng Chen, Yinxu Jia, Guanghui Wang, Changliang Zou

Nankai University

Outline

Introduction

Our Remedy

Finite-Sample Experiments

Synthetic Experiments Real Data Examples

Concluding Remarks

Outline

Introduction

Our Remedy

Finite-Sample Experiments

Synthetic Experiments Real Data Examples

Concluding Remarks

Goodness-of-Fit Testing via Predictiveness Comparison

- Due to the popularity of black box prediction methods like random forests and deep neural networks, there has been a growing interest in the so-called "algorithm (or model)-agnostic" inference on the goodness-of-fit (GoF) in regression.
- This framework aims to assess the appropriateness of a given model for prediction compared to a potentially more complex (often higher-dimensional) model.

Goodness-of-Fit Testing via Predictiveness Comparison

- ▶ Response: $Y \in \mathbb{R}$; Covariates $X \in \mathbb{R}^p$; $(Y, X) \sim P$.
- Define $\mathbb{C}(\tilde{f}, P)$ to quantify predictive capability of $\tilde{f} \in \mathcal{F}$.
- Optimal function: $f \in \arg \max_{\tilde{f} \in \mathcal{F}} \mathbb{C}(\tilde{f}, P)$.

Examples:

- (Negative) squared loss: $\mathbb{C}(\tilde{f}, P) = -E[\{Y \tilde{f}(X)\}^2].$
- ► (Negative) cross-entropy loss: $\mathbb{C}(\tilde{f}, P) = E[Y \log \tilde{f}(X) + (1 Y) \log\{1 \tilde{f}(X)\}].$
- GoF testing involves two classes of functions: \mathcal{F} and subset $\mathcal{F}_{\mathcal{S}}$.
- ▶ Dissimilarity measure: $\psi_{\mathcal{S}} = \mathbb{C}(f, P) \mathbb{C}(f_{\mathcal{S}}, P)$, where $f_{\mathcal{S}} \in \arg \max_{\tilde{f} \in \mathcal{F}_{\mathcal{S}}} \mathbb{C}(\tilde{f}, P)$.

$$H_0: \psi_{\mathcal{S}} = 0$$
 versus $H_1: \psi_{\mathcal{S}} > 0.$

Goodness-of-Fit Testing via Predictiveness Comparison

- Specification Testing: Evaluates the adequacy of a class of models (e.g., parametric models) by testing if E(Y | X) = g_θ(X) holds almost surely. In this context, F is an unrestricted class, and F_S represents parametric models.
- Model Selection: Used to identify the superior predictive model from candidates, often comparing an unregularized model to a regularized one. Testing H₀ assesses if a regularizer improves predictions.
- Variable Importance Measure: Evaluates the significance of a covariate group U in predicting the response Y, with X = (U^T, V^T)^T. This can be expressed in the GoF framework by defining *F*_S to exclude U.

The Degeneracy Issue

The null hypothesis $H_0: \psi_S = 0$ poses challenges due to degeneracy (Verdinelli and Wasserman, 2024; Dai et al., 2024; Williamson et al., 2023).

- Consider testing if $\mu := E(Y) = 0$ with $\mathcal{F} = \mathbb{R}$ and $\mathcal{F}_{\mathcal{S}} = \{0\}$. Using squared loss, $\psi_{\mathcal{S}} = E(Y^2) - E\{(Y - \mu)^2\} = \mu^2$.
- The estimator based on sample-splitting is $\psi_{n,S} = 2\bar{Y}_n^{\text{te}}\bar{Y}_n^{\text{tr}} (\bar{Y}_n^{\text{tr}})^2.$
- When μ ≠ 0, √n(ψ_{n,S} − μ) is asymptotically normal.
 However, under H₀, √nψ_{n,S} = O_P(n^{-1/2}).

indicating degeneracy.

While inference at a *n*-rate is feasible in this simple case, degeneracy poses challenges for more complex models and black box algorithms.

Figure: Empirical distribution of $\sqrt{n}\psi_{n,S}$ scaled by its standard deviation (black histograms) compared to normal distribution (red lines).

Existing Solutions

- Sample Splitting: Williamson et al. (2023) additionally split the testing data to evaluate the nondegenerate influence functions of C(f, P) and C(f_S, P) separately under H₀. However, this reduce sample size and significantly lower power.
- Data Perturbation: Rinaldo et al. (2019) and Dai et al. (2024) proposed adding independent zero-mean noise to empirical influence functions. However, determining the right amount of perturbation remains a heuristic process.
- Standard Error Expansion: Verdinelli and Wasserman (2024) suggested expanding the standard error of the estimator to mitigate the effects of degeneracy.

Our Contributions

- We introduce the Zipper device for algorithm-agnostic inference under the null hypothesis H₀ of equal goodness.
- Our approach utilizes overlapping testing splits with a *slider* parameter $\tau \in [0, 1)$, enhancing data efficiency and significantly improving power while ensuring valid size control.

Outline

Introduction

Our Remedy

Finite-Sample Experiments

Synthetic Experiments Real Data Examples

Concluding Remarks

The Zipper Device

- Randomly partition data into K folds, D₁,..., D_K, with estimators f_{k,n} and f_{k,n,S} for f and f_S constructed from data excluding fold D_k.
- Split D_k into two overlapping sets D_{k,A} and D_{k,B}, adjusting the overlap proportion through τ = |D_{k,o}|/|D_{k,A}|.

Construct estimators C_{k,n} and C_{k,n,S} for C(f, P) and C(f_S, P) using (f_{k,n}, D_{k,A}) and (f_{k,n,S}, D_{k,B}).

• The estimator of
$$\psi_{\mathcal{S}}$$
 is $\psi_{n,\mathcal{S}} = K^{-1} \sum_{k=1}^{K} (\mathbb{C}_{k,n} - \mathbb{C}_{k,n,\mathcal{S}}).$

The Zipper Device

> $\tau = 0$: aligns the vanilla sample splitting method (Williamson et al., 2023; Dai et al., 2024).

 τ = 1: D_{k,o} = D_{k,A} = D_{k,B} = D_k, leading to the degeneracy under H₀ (Williamson et al., 2023).

Restrict the slider parameter $\tau \in [0, 1)$.

Asymptotic Linearity

Theorem (Asymptotic linearity)

If Conditions (C1)–(C4) hold for both tuples $(P, \mathcal{F}, f, f_{k,n})$ and $(P, \mathcal{F}_{\mathcal{S}}, f_{\mathcal{S}}, f_{k,n,\mathcal{S}})$, then

$$\begin{split} \psi_{n,\mathcal{S}} - \psi_{\mathcal{S}} &= \frac{1}{n/(2-\tau)} \sum_{k=1}^{K} \left[\sum_{i: Z_i \in \mathcal{D}_{k,a}} \phi(Z_i) - \sum_{i: Z_i \in \mathcal{D}_{k,b}} \phi_{\mathcal{S}}(Z_i) \right. \\ &+ \sum_{i: Z_i \in \mathcal{D}_{k,o}} \left\{ \phi(Z_i) - \phi_{\mathcal{S}}(Z_i) \right\} \right] + o_P(n^{-1/2}), \end{split}$$

where $\phi(Z) = \dot{\mathbb{C}}(f, P; \delta_Z - P)$ and $\phi_S(Z) = \dot{\mathbb{C}}(f_S, P; \delta_Z - P)$. Here, $\dot{\mathbb{C}}(\tilde{f}, P; h)$ represents the Gâteaux derivative of $\tilde{P} \mapsto \mathbb{C}(\tilde{f}, \tilde{P})$ at P in the direction h, and δ_z denotes the Dirac measure at z. Consequently, for any $\tau \in [0, 1)$,

$$\{n/(2-\tau)\}^{1/2}(\psi_{n,\mathcal{S}}-\psi_{\mathcal{S}}) \xrightarrow{d} \mathsf{N}(0,\nu_{\mathcal{S},\tau}^2)$$

as $n \to \infty$, where $\nu_{S,\tau}^2 = (1 - \tau)(\sigma^2 + \sigma_S^2) + \tau \eta_S^2$, $\sigma^2 = E\{\phi^2(Z)\}, \sigma_S^2 = E\{\phi_S^2(Z)\}$, and $\eta_S^2 = E[\{\phi(Z) - \phi_S(Z)\}^2]$.

Null Behaviors

• Use the plug-in principle to obtain the variance estimator $\nu_{n,S,\tau}^2$ for $\nu_{S,\tau}^2$ under H_0 .

▶ $\nu_{n,S,\tau}^2$ converges to $\nu_{S,\tau}^2$ as $n \to \infty$ under H_0 if Conditions (C4)–(C5) are satisfied.

The normalized test statistic is given by

$$T_{\tau} = \frac{\sqrt{n/(2-\tau)}\psi_{n,\mathcal{S}}}{\nu_{n,\mathcal{S},\tau}}$$

Reject H_0 if $T_{\tau} > z_{1-\alpha}$ for a prespecified significance level α .

• Under H_0 , since $T_{\tau} \stackrel{d}{\rightarrow} N(0,1)$, Zipper ensures valid size control.

Power Analysis

Theorem (Power approximation)

Suppose the Conditions (C1)–(C5) hold for both tuples $(P, \mathcal{F}, f, f_{k,n})$ and $(P, \mathcal{F}_{\mathcal{S}}, f_{\mathcal{S}}, f_{\mathcal{S}}, f_{k,n,\mathcal{S}})$. Then for any $\tau \in [0, 1)$, the power function $\Pr(T_{\tau} > z_{1-\alpha} \mid H_1) = G_{\mathcal{S},n,\alpha}(\tau) + o(1)$, where

$$G_{\mathcal{S},n,\alpha}(\tau) = \Phi\left(-\frac{\nu_{\mathcal{S},\tau}^{(0)}}{\nu_{\mathcal{S},\tau}}z_{1-\alpha} + \frac{\{n/(2-\tau)\}^{1/2}\psi_{\mathcal{S}}}{\nu_{\mathcal{S},\tau}}\right),$$

 $\nu_{S,\tau}^{(0)} = \{(1-\tau)(\sigma^2 + \sigma_S^2)\}^{1/2}$ and Φ denotes the distribution function of N(0,1). Furthermore, if $Cov\{\phi(Z), \phi_S(Z)\} \ge 0$, then $G_{S,n,\alpha}(\tau)$ increases with τ .

Power Analysis

Sample Splitting: At $\tau = 0$, the approximate power function is:

$$\mathcal{G}_{\mathcal{S},n,lpha}(0)=\Phi\left(-z_{1-lpha}+rac{(n/2)^{1/2}\psi_{\mathcal{S}}}{(\sigma^2+\sigma_{\mathcal{S}}^2)^{1/2}}
ight).$$

• Zipper: For $\tau \in [0, 1)$, power function satisfies:

$$G_{\mathcal{S},n,\alpha}(\tau) \stackrel{(i)}{\geq} \Phi\left(-z_{1-\alpha} + \frac{\{n/(2-\tau)\}^{1/2}\psi_{\mathcal{S}}}{(\sigma^2 + \sigma_{\mathcal{S}}^2)^{1/2}}\right) \stackrel{(ii)}{\geq} G_{\mathcal{S},n,\alpha}(0).$$

The power improvement of Zipper compared to sample splitting comes from

- the introduction of overlap mechanism τ (Inequality (ii)).
- the utilization of variance estimator $\nu_{n,S,\tau}^2$ (Inequality (ii)).

Efficiency-and-Degeneracy Tradeoff

- To achieve better power while maintaining a reliable size, we propose a simple approach for selecting τ.
- To ensure a favorable normal approximation, we can choose the sample size $(1-\tau)n/(2-\tau)$ such that it meets a predetermined "large" sample size, such as $n_0 = 30$ or 50. Say, we can specify $\tau = \tau_0 := (n 2n_0)/(n n_0)$.

In the case of very large n, a truncation may be needed to safeguard against degeneracy. For example, we can set τ = min{τ₀, 0.9}.

Outline

Introduction

Our Remedy

Finite-Sample Experiments

Synthetic Experiments Real Data Examples

Concluding Remarks

Variable Importance Assessment

- Models Considered:
 - Normal Response: $Y \sim N(X^{\top}\beta, \sigma_Y^2)$.
 - ▶ Binomial Response: $Y \sim \operatorname{binom}(1, \operatorname{logit}(X^{\top}\beta))$.
- Design Scenarios: n = 500.
 - Low-Dimensional: p = 5 with $\beta = (\delta, \delta, 5, 0, 5, 0_{p-5})^{\top}$.
 - High-Dimensional: p = 1000 with $\beta = (\delta, \delta, 5_{0.01p}, 0_{0.99p-2}^{\top})^{\top}$.
- Test the significance of the first two variables given the significance level $\alpha = 5\%$.

•
$$\tau = \min\{\tau_0, 0.9\}$$
 with $n_0 = 50$.

Table: Empirical sizes (in percentage) of various testing procedures, with standard deviations in brackets.

Model	р	Zipper	WGSC-3	DSP-Split	WGSC-2	DSP-Pert
Normal	5	3.9(0.19)	5.1(0.22)	4.6(0.21)	0.1(0.03)	10.2(0.30)
	1000	4.3(0.20)	6.2(0.24)	5.9(0.24)	16.7(0.37)	35.0(0.48)
Dimensial	5	3.7(0.19)	3.9(0.19)	4.2(0.20)	0.6(0.08)	4.0(0.20)
ыпота	1000	5.6(0.23)	4.8(0.21)	5.1(0.22)	19.9(0.40)	38.6(0.49)

Figure: Empirical power of various testing methods as a function of the magnitude δ . The dot-dashed horizontal line represents the intercept at $\alpha = 5\%$.

・ロット (四)・ (目)・ (日)・ (日)

Model Specification Testing

•
$$Y = X\beta + \varepsilon$$
, where $\|\beta\|_0 = 2$

• $H_0: \beta = (*, *, 0_{p-2})^\top$ vs $H_1: \|\beta\|_0 = 2$ but not H_0 (with * as any nonzero value).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Scenarios:

► (i)
$$\beta = (0.4, 0.4, 0_{p-2})^{\top}$$
 (under H_0).

• (ii)
$$\beta = (0.4, 0, 0.4, 0_{p-3})^{\top}$$
 (under H_1)

▶ (iii)
$$\beta = (0, 0, 0.4, 0.4, 0_{p-4})^{ op}$$
 (under H_1).

Estimation Methods:

- Best subset selection for p = 5.
- Abess (Zhu et al. (2022)) for p = 1000.

Table: Empirical sizes and powers (in percentage) for the model specification test, with standard deviations in brackets.

р	5				1000					
Scenerio	Zipper	WGSC-3	DSP-Split	WGSC-2	Zipper	WGSC-3	DSP-Split	WGSC-2		
(i)	4.3(0.20)	6.2(0.22)	5.6(0.20)	0.0(0.00)	4.2(0.19)	5.5(0.20)	6.5(0.21)	16.6(0.36)		
(ii)	96.9(0.17)	31.2(0.46)	34.9(0.46)	100.0(0.00)	94.2(0.22)	29.8(0.46)	31.4(0.46)	97.3(0.16)		
(iii)	100.0(0.00)	81.4(0.39)	79.3(0.38)	100.0(0.00)	100.0(0.00)	81.3(0.40)	78.1(0.41)	100.0(0.00)		

MNIST Handwritten Dataset

- MNIST dataset consists of size-normalized and center-aligned handwritten digit images. Each image is represented as a 28 × 28 pixel grid (p = 28² = 784).
- Focused on digits 7 and 9, resulting in n = 14251 images.
- Images divided into nine distinct regions. Conduct variable importance testing for each region while considering others.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Employed a Convolutional Neural Network (CNN) for image analysis.
- Set significance level for tests at $\alpha = 0.05/9$ using Bonferroni correction.

Figure: Hypothesis regions (blank squares) and important discoveries (squares filled in red) comparing the Zipper method (left column) with WGSC-3 (right column).

- The bodyfat dataset (Penrose et al., 1985) provides an estimate of body fat percentages obtained through underwater weighing, along with various body circumference measurements from a sample of n = 252 men.
- Conduct variable importance tests for each body circumference while considering potential influences from essential attributes such as age, weight, and height.

- Employ the random forest for accurate regression function estimation.
- Set significance level for tests at $\alpha = 0.05/10$ using Bonferroni correction.

Table: P-values obtained from the Zipper and WGSC-3 methods for each marginal test regarding the relevance of the body circumference.

Body Part	Neck	Chest	Abdomen	Hip	Thigh	Knee	Ankle	Biceps	Forearm	Wrist
Zipper	0.98	0.10	5.48×10^{-10}	4.01×10^{-4}	0.10	0.03	0.20	0.26	0.35	0.02
WGSC-3	0.12	0.01	$9.30 imes10^{-4}$	0.29	0.01	0.06	0.36	0.18	0.69	0.05

- The Zipper method identifies both Abdomen and Hip as significant factors. In contrast, WGSC-3 suggests only Abdomen as important.
- A recent study by Zhu et al. (2023) proposed the formula (Waist + Hip)/Height as a straightforward body fat evaluation index, which aligns with our findings.

Outline

Introduction

Our Remedy

Finite-Sample Experiments

Synthetic Experiments Real Data Examples

Concluding Remarks

Concluding Remarks

- We introduce Zipper, an effective tool for addressing degeneracy in algorithm/model-agnostic inference.
- The mechanism of Zipper involves the recycling of data usage by constructing two overlapping data splits within the testing samples, which holds potential for independent exploration.
- Furthermore, incorporating the Zipper device into large-scale comparisons to achieve error rate control warrants additional research.

Reference

- Dai, B., Shen, X., and Pan, W. (2024). Significance tests of feature relevance for a black-box learner. IEEE Transactions on Neural Networks and Learning Systems, 35(2):1898–1911.
- Penrose, K. W., Nelson, A., and Fisher, A. (1985). Generalized body composition prediction equation for men using simple measurement techniques. *Medicine & Science in Sports & Exercise*, 17(2):189.
- Rinaldo, A., Wasserman, L., and G'Sell, M. (2019). Bootstrapping and sample splitting for high-dimensional, assumption-lean inference. *The Annals of Statistics*, 47(6):3438–3469.
- Verdinelli, I. and Wasserman, L. (2024). Decorrelated variable importance. Journal of Machine Learning Research, 25(7):1–27.
- Williamson, B. D., Gilbert, P. B., Simon, N., and Carone, M. (2023). A general framework for inference on algorithm-agnostic variable importance. *Journal of the American Statistical Association*, 118(543):1645–1658.
- Zhu, J., Wang, X., Hu, L., Huang, J., Jiang, K., Zhang, Y., Lin, S., and Zhu, J. (2022). abess: A fast best-subset selection library in python and r. *Journal of Machine Learning Research*, 23(202):1–7.
- Zhu, Y., Maruyama, H., Onoda, K., Zhou, Y., Huang, Q., Hu, C., Ye, Z., Li, B., and Wang, Z. (2023). Body mass index combined with (waist + hip)/height accurately screened for normal-weight obesity in chinese young adults. *Nutrition*, 108:111939.