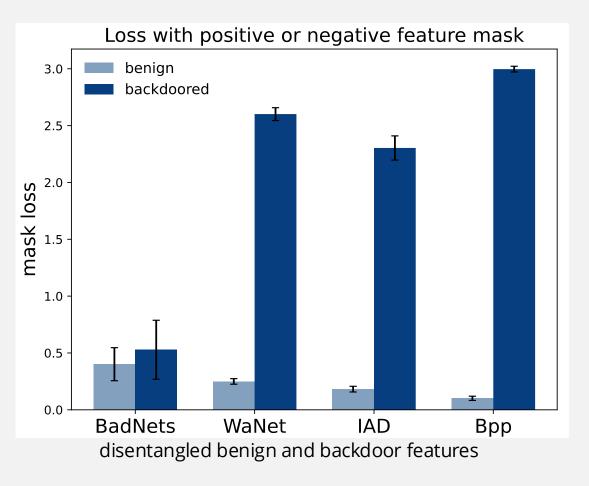
BAN: Detecting Backdoors Activated by Adversarial Neuron Noise


Xiaoyun Xu Radboud University xiaoyun.xu@ru.nl Zhuoran Liu* Radboud University z.liu@cs.ru.nl

Stefanos Koffas Delft University of Technology s.koffas@tudelft.nl Shujian Yu Vrije Universiteit Amsterdam s.yu3@vu.nl Stjepan Picek Radboud University stjepan.picek@ru.nl

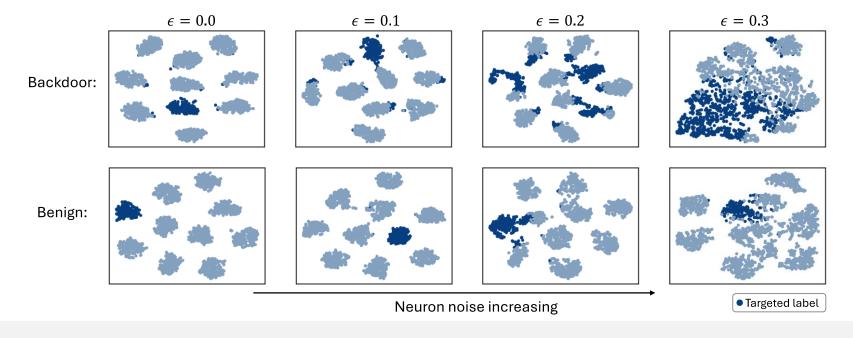
BACKDOOR FEATURES COULD BE NON-PROMINENT

- Defenses that are biased towards large differences of benign and backdoor features may not work in cases like BadNets.
- BadNets features are not as prominent as others.

HUGE TIME CONSUMPTION DUE TO OPTIMIZATION

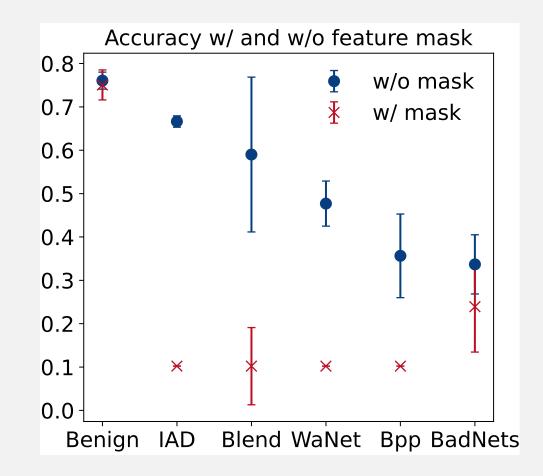
- Existing methods (such as NC¹, FeatureRE² and Unicorn³) need to conduct optimization for every class to inverse all possible backdoor triggers.
- This shortcoming also limits existing methods against all-to-all backdoor attacks.

The inversed triggers of 10 classes from CIFAR-10 by NC


This one is smaller (L_2 norm) than others and could be the backdoor trigger

- 1. Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks
- 2. Rethinking the Reverse-engineering of Trojan Triggers
- 3. UNICORN: A Unified Backdoor Trigger Inversion Framework

NEURON NOISE HELPS ACTIVATE BACKDOOR


- Adding noise on neuron weights can activate backdoor when receiving clean data as input.
- As noise increases, the backdoor model identifies more inputs from each class as the target label.
- The clean model has fewer errors, and there is no substantial increase in the number of misclassifications to the target class.

FEATURE DECOUPLING WITH MASK

- But the neuron noise is not enough for precise backdoor detection
- A feature decoupling process enhances the effect of noise on backdoored features but maintain a decreased effect on benign features.

NEURON NOISE IS HELPFUL TO REMOVE THE BACKDOOR

- Using optimized neuron noise to fine-tune the model can effectively remove the backdoor.
- The loss for our noise fine-tuning can be written as:

 $\min_{\mathbf{w},\mathbf{b}} \mathcal{L}(f(\mathbf{x};\mathbf{w},\mathbf{b}),y) + \lambda_2 \mathcal{L}(f(\mathbf{x};(1+\boldsymbol{\delta})\odot\mathbf{w},(1+\boldsymbol{\xi})\odot\mathbf{b}),y).$

OVER RELY ON PROMINENT FEATURES LEADS TO WORSE DETECTION

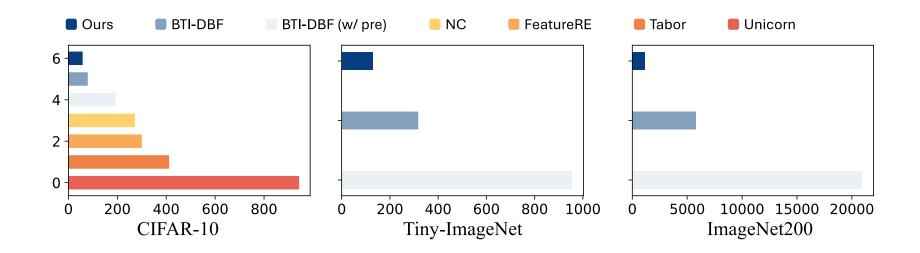

- Recent backdoor detections may perform worse than NC. Because they rely too much on the prominent features.
- Our method performs well on different attack baselines.

Table 1: The detection results under different model architectures on CIFAR-10. The "Bd." refers to the number of models the defense identifies as backdoored. The "Acc." refers to detection success accuracy. The best results are marked in bold. BTI-DBF* refers to an improved version (details in Section 3.4).

Model	Attack	NC		Tabor		FeatureRE		Unicorn		BTI-DBF*		Ours	
		Bd.	Acc.	Bd.	Acc.	Bd.	Acc.	Bd.	Acc.	Bd.	Acc.	Bd.	Acc.
ResNet18	No Attack	0	100%	0	100%	2	90%	6	70%	0	100%	0	100%
	BadNets	20	100%	20	100%	14	70%	18	90%	18	90%	20	100%
	Blend	20	100%	20	100%	20	100%	19	95%	20	100%	18	90%
	WaNet	11	55%	8	40%	15	75%	20	100%	18	90%	20	100%
	IAD	0	0%	0	0%	15	75%	11	55%	20	100%	20	100%
	Bpp	0	0%	1	5%	12	60%	17	85 %	20	100%	20	100%
VGG16	No Attack	0	100%	0	100%	3	85%	6	70%	6	70%	0	100%
	BadNets	18	90%	16	80%	13	65%	16	80%	18	90%	19	95%
	Blend	19	95%	19	95%	16	80%	18	90%	16	80%	17	85%
	WaNet	10	50%	9	45%	12	60%	18	90%	16	80%	20	100%
	IAD	0	0%	0	0%	8	40%	17	85%	20	100%	20	100%
	Bpp	9	45%	10	50%	5	25%	15	75%	14	70%	18	90%
DenseNet121	No Attack	0	100%	0	100%	5	75%	8	60%	3	85%	0	100%
	BadNets	18	90%	20	100%	19	95%	15	75%	17	85%	20	100%
	Blend	20	100%	20	100%	12	60%	18	90%	19	95%	20	100%
	WaNet	13	65%	10	50%	20	100%	17	85%	14	70%	19	95%
	IAD	0	0%	0	0%	14	70%	16	80%	14	70%	19	95%
	Bpp	0	0%	0	0%	16	80%	8	40%	16	80%	20	100%
Average		60.56%		59.17%		72.5%		78.61%		86.39%		97.22%	

TIME CONSUMPTION

• BAN is efficient and scalable as we do not iterate over all target classes

Take-home messages

- 1. Traditional defenses outperformed the latest feature space defenses on input space backdoor attacks as feature space defenses over-rely on prominent features.
- 2. Neuron noise can activate backdoor when receiving clean data as input.
- 3. Optimization of neuron noise is efficient without relying on the target class.

