

Elucidating the Design Space of Dataset Condensation

Shitong Shao, Zikai Zhou, Huanran Chen and Zhiqiang Shen

NeurIPS 2024

What is Dataset Distillation/Condensation?

Source: Dataset Distillation: A Comprehensive Reviewhttps://arxiv.org/pdf/2301.07014

Motivation

■ *Some datasetcondensation (DC) methods incur high computational costs, which*

limit scalability to larger datasets

■ *Others are restricted to less optimal design spaces, which could hinder potential*

improvements

Definition

Preliminary. Dataset condensation involves generating a synthetic dataset $\mathcal{D}^{\mathcal{S}} := {\{\mathbf{x}_{i}^{\mathcal{S}}, \mathbf{y}_{i}^{\mathcal{S}}\}}_{i=1}^{|\mathcal{D}^{\mathcal{S}}|}$ consisting of images \mathcal{X}^S and labels \mathcal{Y}^S , designed to be as informative as the original dataset $\mathcal{D}^{\mathcal{T}} := {\{\mathbf{x}_i^{\mathcal{T}}, \mathbf{y}_i^{\mathcal{T}}\}}_{i=1}^{|\mathcal{D}^{\mathcal{T}}|}$, which includes images $\mathcal{X}^{\mathcal{T}}$ and labels $\mathcal{Y}^{\mathcal{T}}$. The synthetic dataset $\mathcal{D}^{\mathcal{S}}$ is substantially smaller in size than $\mathcal{D}^{\mathcal{T}}(|\mathcal{D}^{\mathcal{S}}| \ll |\mathcal{D}^{\mathcal{T}}|)$. The goal of this process is to maintain the critical attributes of $\mathcal{D}^{\mathcal{T}}$ to ensure robust or comparable performance during evaluations on test protocol $\mathcal{P}_{\mathcal{D}}$.

 $\arg \min \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{P}_{\mathcal{D}}}[\ell_{eval}(\mathbf{x}, \mathbf{y}, \phi^*)], \text{ where } \phi^* = \arg \min_{\phi} \mathbb{E}_{(\mathbf{x}_i^{\mathcal{S}}, \mathbf{y}_i^{\mathcal{S}}) \sim \mathcal{D}^{\mathcal{S}}}[\ell(\phi(\mathbf{x}_i^{\mathcal{S}}), \mathbf{y}_i^{\mathcal{S}})].$ (1)

Definition

 $\mathcal{L}_{syn} = ||p(\mu|\mathcal{X}^{\mathcal{S}}) - p(\mu|\mathcal{X}^{\mathcal{T}})||_2 + ||p(\sigma^2|\mathcal{X}^{\mathcal{S}}) - p(\sigma^2|\mathcal{X}^{\mathcal{T}})||_2, \ s.t. \ \mathcal{L}_{syn} \sim \mathbb{S}_{match},$ $\mathcal{X}^{\mathcal{S}*} = \arg \min \mathbb{E}_{\mathcal{L}_{syn}\sim \mathbb{S}_{match}} [\mathcal{L}_{syn}(\mathcal{X}^{\mathcal{S}}, \mathcal{X}^{\mathcal{T}})],$

> $\mathcal{X}^{\mathcal{S}} = \bigcup_{i}^{\infty} \mathcal{X}_{i}^{\mathcal{S}}, \ \mathcal{X}_{i}^{\mathcal{S}} = \{\mathbf{x}_{j}^{i} = \text{concat}(\{\tilde{\mathbf{x}}_{k}\}_{k=1}^{N} \subset \mathcal{X}_{i}^{\mathcal{T}})\}_{j=1}^{IPC},$ (3)

 (2)

 (4)

where C denotes the number of classes, concat(\cdot) represents the concatenation operator, $\mathcal{X}_i^{\mathcal{S}}$ signifies the set of condensed images belonging to the *i*-th class, and $\mathcal{X}_i^{\mathcal{T}}$ corresponds to the set of original images of the *i*-th class. It is important to note that the default settings for N are 1 and 4, as specified in the works (Zhou et al., 2023) and (Sun et al., 2024), respectively. Using one or more observer models, denoted as $\{\phi_i\}_{i=1}^N$, we then derive the soft labels \mathcal{Y}^S from the condensed image set \mathcal{X}^S .

$$
\mathcal{Y}^{\mathcal{S}} = \bigcup_{\mathbf{x}_i^{\mathcal{S}} \subset \mathcal{X}^{\mathcal{S}}} \frac{1}{N} \sum_{i=1}^N \phi_i(\mathbf{x}_i^{\mathcal{S}}).
$$

Design Choice

NEURAL INFORMATION PROCESSING SYSTEMS

Observation

---- w/o reducing sharpness

w/ reducing sharpness

original dataset distilled dataset

128 256 512 1024

 $\overline{32}$ 64

 (c)

Figure 2: (a): Illustration of soft category-aware matching (2) using a Gaussian distribution in \mathbb{R}^2 . (b): The effect of employing smoothing LR schedule $\left(\bigcirc\right)$ on loss landscape sharpness reduction. (c) top: The role of flatness regularization (6) in reducing the Frobenius norm of the Hessian matrix driven by data synthesis iteration. (c) bottom: Cosine similarity comparison between local gradients (obtained from original and distilled datasets via random batch selection) and the global gradient (obtained from gradient accumulation).

Real Data Initialization

Soft Category-aware Matching

Sketch Definition 3.1. (formal definition in Appendix B.2) Given N random samples $\{x_i\}_{i=1}^N$ with an unknown distribution $p_{mix}(x)$, we define two forms to statistical matching. Form (1): involves synthesizing M distilled samples $\{y_i\}_{i=1}^M$, where $M \ll N$, ensuring that the variances and means of both $\{x_i\}_{i=1}^N$ and $\{y_i\}_{i=1}^M$ are consistent. Form (2): treats $p_{mix}(x)$ as a GMM with C components. For random samples $\{x_i^j\}_{i=1}^{N_j}$ ($\sum_j N_j = N$) within each component c_j , we synthesize M_j ($\sum_j M_j = M$) distilled samples $\{y_i^j\}_{i=1}^{M_j}$, where $M_j \ll N_j$, to maintain the consistency of variances and means between $\{x_i^j\}_{i=1}^{N_j}$ and $\{y_i^j\}_{i=1}^{M_j}$.

e.g., soft category-aware matching More details of proofs and theorems can be found in our paper $\mathcal{L}_{\text{syn}}' = \alpha ||p(\mu|\mathcal{X}^{\mathcal{S}}) - p(\mu|\mathcal{X}^{\mathcal{T}})||_2 + ||p(\sigma^2|\mathcal{X}^{\mathcal{S}}) - p(\sigma^2|\mathcal{X}^{\mathcal{T}})||_2$ #Form (1) $+\left(1-\alpha\right)\sum p(c_i)\left[||p(\mu|{\cal X}^{\cal S},c_i)-p(\mu|{\cal X}^{\cal T},c_i)||_2+||p(\sigma^2|{\cal X}^{\cal S},c_i)-p(\sigma^2|{\cal X}^{\cal T},c_i)||_2\right],$ $#Form(2)$

NEURAL INFORMATION PROCESSING SYSTEMS

Soft Category-aware Matching

NEURAL INFORMATION PROCESSING SYSTEMS

> **Theorem 3.2.** (proofs in Theorems B.5, B.7, B.8 and Corollary B.6) Given the original data distribution $p_{mix}(x)$, and define condensed samples as x and y in **Form (1)** and **Form (2)** with their distributions characterized by P and Q. Subsequently, it follows that (i) $\mathbb{E}[x] \equiv \mathbb{E}[y]$, (ii) $\mathbb{D}[x] \equiv \mathbb{D}[y]$, (iii) $\mathcal{H}(P) - \frac{1}{2} [\log(\mathbb{E}[\mathbb{D}[y^j]] + \mathbb{D}[\mathbb{E}[y^j]]) - \mathbb{E}[\log(\mathbb{D}[y^j])]] \leq \mathcal{H}(Q) \leq \mathcal{H}(P) +$ $\frac{1}{4}\mathbb{E}_{(i,j)\sim\prod[\mathbf{C},\mathbf{C}]} \left[\frac{(\mathbb{E}[y^i]-\mathbb{E}[y^j])^2(\mathbb{D}[y^i]+\mathbb{D}[y^j])}{\mathbb{D}[y^i]\mathbb{D}[y^j]} \right]$ and (iv) $D_{KL}[p_{mix}||P] \leq \mathbb{E}_{i\sim\mathcal{U}[1,...,\mathbf{C}]} \mathbb{E}_{j\sim\mathcal{U}[1,...,\mathbf{C}]} \frac{\mathbb{E}[y^j]^2}{\mathbb{D}[y^i]}$ and $D_{KL}[p_{mix}||Q] = 0$.

Flatness Regularization

 $\mathcal{L}_{FR} = \mathbb{E}_{\mathcal{L}_{syn}\sim\mathbb{S}_{match}}[\mathcal{L}_{syn}(\mathcal{X}^{\mathcal{S}}, \mathcal{X}_{EMA}^{\mathcal{S}})], \ \mathcal{X}_{EMA}^{\mathcal{S}} = \beta \mathcal{X}_{EMA}^{\mathcal{S}} + (1-\beta)\mathcal{X}^{\mathcal{S}},$

Theorem 3.3. (proof in Appendix E) The optimization objective \mathcal{L}_{FR} can ensure sharpness-aware minimization within a ρ -ball for each point along a straight path between \mathcal{X}^S and \mathcal{X}^S and \mathcal{X}^S

 $\mathcal{L}'_{FR} = D_{KL}(\text{softmax}(\phi(\mathcal{X}^S)/\tau)||\text{softmax}(\phi(\mathcal{X}^S_{EMA})/\tau)), \ \mathcal{X}^S_{EMA} = \beta \mathcal{X}^S_{EMA} + (1 - \beta)\mathcal{X}^S,$

Table 1: Comparison with the SOTA baseline dataset condensation methods. SRe²L and RDED utilize ResNet-18 for data synthesis, whereas G-VBSM and EDC leverage various backbones for this purpose.

Experiment

NEURAL INFORMATION PROCESSING SYSTEMS

Table 2: Cross-architecture generalization comparison with different IPCs on ImageNet-1k. RDED refers to the latest SOTA method on ImageNet-1k and $+\Delta$ stands for the improvement for each architecture.

NEURAL INFORMATION PROCESSING SYSTEMS

Experiment

Table 3: Ablation studies on ImageNet-1k with IPC 10. Left: Explore the influence of the slowdown coefficient ζ with CONFIG C. Right: Evaluate the effectiveness of real image initialization (\odot), smoothing LR schedule (\odot) and smaller batch size (\odot \odot) with $\zeta = 2$.

Table 4: Ablation studies on ImageNet-1k with IPC 10. Investigate the potential effects of several factors, including loss type, loss weight, β , and τ , amid flatness regularization (\odot).

Experiment

NEURAL INFORMATION
PROCESSING SYSTEMS

Table 5: Ablation studies on ImageNet-1k with IPC 10. Evaluate the effectiveness of several design choices, including soft category-aware matching (\bigcircled{e}) , weak augmentation (\bigcircled{e}) and EMA-based evaluation (\bigcircled{e}) .

Figure 4: Application on ImageNet-1k. We evaluate the effectiveness of data-free network slimming and continual learning using VGG11-BN and ResNet-18, respectively.

Table 22: Comparison of Different Methods on ImageNet-21k.

THANK YOU!