

Elucidating the Design Space of Dataset Condensation

Shitong Shao, Zikai Zhou, Huanran Chen and Zhiqiang Shen

NeurIPS 2024

What is Dataset Distillation/Condensation?

Motivation

Some dataset condensation (DC) methods incur high computational costs, which

limit scalability to larger datasets

Others are restricted to less optimal design spaces, which could hinder potential

improvements

Definition

Preliminary. Dataset condensation involves generating a synthetic dataset $\mathcal{D}^{\mathcal{S}} := \{\mathbf{x}_i^{\mathcal{S}}, \mathbf{y}_i^{\mathcal{S}}\}_{i=1}^{|\mathcal{D}^{\mathcal{S}}|}$ consisting of images $\mathcal{X}^{\mathcal{S}}$ and labels $\mathcal{Y}^{\mathcal{S}}$, designed to be as informative as the original dataset $\mathcal{D}^{\mathcal{T}} := \{\mathbf{x}_i^{\mathcal{T}}, \mathbf{y}_i^{\mathcal{T}}\}_{i=1}^{|\mathcal{D}^{\mathcal{T}}|}$, which includes images $\mathcal{X}^{\mathcal{T}}$ and labels $\mathcal{Y}^{\mathcal{T}}$. The synthetic dataset $\mathcal{D}^{\mathcal{S}}$ is substantially smaller in size than $\mathcal{D}^{\mathcal{T}}$ ($|\mathcal{D}^{\mathcal{S}}| \ll |\mathcal{D}^{\mathcal{T}}|$). The goal of this process is to maintain the critical attributes of $\mathcal{D}^{\mathcal{T}}$ to ensure robust or comparable performance during evaluations on test protocol $\mathcal{P}_{\mathcal{D}}$.

 $\arg\min \mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\mathcal{P}_{\mathcal{D}}}[\ell_{\text{eval}}(\mathbf{x},\mathbf{y},\phi^*)], \text{ where } \phi^* = \arg\min_{\phi} \mathbb{E}_{(\mathbf{x}_i^{\mathcal{S}},\mathbf{y}_i^{\mathcal{S}})\sim\mathcal{D}^{\mathcal{S}}}[\ell(\phi(\mathbf{x}_i^{\mathcal{S}}),\mathbf{y}_i^{\mathcal{S}})].$ (1)

Definition

$$\begin{split} \mathcal{L}_{syn} &= ||p(\mu|\mathcal{X}^{\mathcal{S}}) - p(\mu|\mathcal{X}^{\mathcal{T}})||_{2} + ||p(\sigma^{2}|\mathcal{X}^{\mathcal{S}}) - p(\sigma^{2}|\mathcal{X}^{\mathcal{T}})||_{2}, \ s.t. \ \mathcal{L}_{syn} \sim \mathbb{S}_{match}, \\ \mathcal{X}^{\mathcal{S}*} &= \operatorname*{arg\,min}_{\mathcal{X}^{\mathcal{S}}} \mathbb{E}_{\mathcal{L}_{syn} \sim \mathbb{S}_{match}}[\mathcal{L}_{syn}(\mathcal{X}^{\mathcal{S}}, \mathcal{X}^{\mathcal{T}})], \end{split}$$

 $\mathcal{X}^{\mathcal{S}} = \bigcup_{i=1}^{\mathbf{C}} \mathcal{X}_{i}^{\mathcal{S}}, \ \mathcal{X}_{i}^{\mathcal{S}} = \{\mathbf{x}_{j}^{i} = \operatorname{concat}(\{\tilde{\mathbf{x}}_{k}\}_{k=1}^{N} \subset \mathcal{X}_{i}^{\mathcal{T}})\}_{j=1}^{\mathsf{IPC}},$ (3)

(2)

(4)

where C denotes the number of classes, $\operatorname{concat}(\cdot)$ represents the concatenation operator, $\mathcal{X}_i^{\mathcal{S}}$ signifies the set of condensed images belonging to the *i*-th class, and $\mathcal{X}_i^{\mathcal{T}}$ corresponds to the set of original images of the *i*-th class. It is important to note that the default settings for N are 1 and 4, as specified in the works (Zhou et al., 2023) and (Sun et al., 2024), respectively. Using one or more observer models, denoted as $\{\phi_i\}_{i=1}^N$, we then derive the soft labels $\mathcal{Y}^{\mathcal{S}}$ from the condensed image set $\mathcal{X}^{\mathcal{S}}$.

$$\mathcal{Y}^{\mathcal{S}} = \bigcup_{\mathbf{x}_{i}^{\mathcal{S}} \subset \mathcal{X}^{\mathcal{S}}} \frac{1}{N} \sum_{i=1}^{N} \phi_{i}(\mathbf{x}_{i}^{\mathcal{S}}).$$

Design Choice

NEURAL INFORMATION PROCESSING SYSTEMS

Observation

Effectiveness of Reducing Sharpness

----- w/o reducing sharpness

w/ reducing sharpness

original dataset distilled dataset

256 512 1024

Batch Size

(c)

32 64 128

Figure 2: (a): Illustration of soft category-aware matching (2) using a Gaussian distribution in \mathbb{R}^2 . (b): The effect of employing smoothing LR schedule (2) on loss landscape sharpness reduction. (c) top: The role of flatness regularization (()) in reducing the Frobenius norm of the Hessian matrix driven by data synthesis iteration. (c) bottom: Cosine similarity comparison between local gradients (obtained from original and distilled datasets via random batch selection) and the global gradient (obtained from gradient accumulation).

Real Data Initialization

Soft Category-aware Matching

NEURAL INFORMATION PROCESSING SYSTEMS

Sketch Definition 3.1. (formal definition in Appendix B.2) Given N random samples $\{x_i\}_{i=1}^N$ with an unknown distribution $p_{mix}(x)$, we define two forms to statistical matching. Form (1): involves synthesizing M distilled samples $\{y_i\}_{i=1}^M$, where $M \ll N$, ensuring that the variances and means of both $\{x_i\}_{i=1}^N$ and $\{y_i\}_{i=1}^M$ are consistent. Form (2): treats $p_{mix}(x)$ as a GMM with C components. For random samples $\{x_i^j\}_{i=1}^{N_j}$ ($\sum_j N_j = N$) within each component c_j , we synthesize M_j ($\sum_j M_j = M$) distilled samples $\{y_i^j\}_{i=1}^{M_j}$, where $M_j \ll N_j$, to maintain the consistency of variances and means between $\{x_i^j\}_{i=1}^{N_j}$ and $\{y_i^j\}_{i=1}^{M_j}$.

e.g., soft category-aware matching More details of proofs and theorems can be found in our paper $\mathcal{L}'_{syn} = \alpha ||p(\mu|\mathcal{X}^{\mathcal{S}}) - p(\mu|\mathcal{X}^{\mathcal{T}})||_{2} + ||p(\sigma^{2}|\mathcal{X}^{\mathcal{S}}) - p(\sigma^{2}|\mathcal{X}^{\mathcal{T}})||_{2} \quad \text{#Form (1)}$ $+ (1 - \alpha) \sum_{i=1}^{\mathbf{C}} p(c_{i}) \left[||p(\mu|\mathcal{X}^{\mathcal{S}}, c_{i}) - p(\mu|\mathcal{X}^{\mathcal{T}}, c_{i})||_{2} + ||p(\sigma^{2}|\mathcal{X}^{\mathcal{S}}, c_{i}) - p(\sigma^{2}|\mathcal{X}^{\mathcal{T}}, c_{i})||_{2} \right], \quad \text{#Form (2)}$

Soft Category-aware Matching

NEURAL INFORMATION PROCESSING SYSTEMS

> **Theorem 3.2.** (proofs in Theorems B.5, B.7, B.8 and Corollary B.6) Given the original data distribution $p_{mix}(x)$, and define condensed samples as x and y in Form (1) and Form (2) with their distributions characterized by P and Q. Subsequently, it follows that (i) $\mathbb{E}[x] \equiv \mathbb{E}[y]$, (ii) $\mathbb{D}[x] \equiv \mathbb{D}[y]$, (iii) $\mathcal{H}(P) - \frac{1}{2} \left[\log(\mathbb{E}[\mathbb{D}[y^j]] + \mathbb{D}[\mathbb{E}[y^j]]) - \mathbb{E}[\log(\mathbb{D}[y^j])] \right] \leq \mathcal{H}(Q) \leq \mathcal{H}(P) + \frac{1}{4}\mathbb{E}_{(i,j)\sim\prod[\mathbb{C},\mathbb{C}]} \left[\frac{(\mathbb{E}[y^i] - \mathbb{E}[y^j])^2(\mathbb{D}[y^i] + \mathbb{D}[y^j])}{\mathbb{D}[y^i]\mathbb{D}[y^j]} \right] and$ (iv) $D_{KL}[p_{mix}||P] \leq \mathbb{E}_{i\sim\mathcal{U}[1,...,\mathbb{C}]}\mathbb{E}_{j\sim\mathcal{U}[1,...,\mathbb{C}]} \frac{\mathbb{E}[y^j]^2}{\mathbb{D}[y^i]}$ and $D_{KL}[p_{mix}||Q] = 0$.

Flatness Regularization

 $\mathcal{L}_{\text{FR}} = \mathbb{E}_{\mathcal{L}_{\text{syn}} \sim \mathbb{S}_{\text{match}}} [\mathcal{L}_{\text{syn}}(\mathcal{X}^{\mathcal{S}}, \mathcal{X}^{\mathcal{S}}_{\text{EMA}})], \ \mathcal{X}^{\mathcal{S}}_{\text{EMA}} = \beta \mathcal{X}^{\mathcal{S}}_{\text{EMA}} + (1 - \beta) \mathcal{X}^{\mathcal{S}},$

Theorem 3.3. (proof in Appendix *E*) The optimization objective \mathcal{L}_{FR} can ensure sharpness-aware minimization within a ρ -ball for each point along a straight path between \mathcal{X}^{S} and \mathcal{X}^{S}_{EMA} .

 $\mathcal{L}_{\mathbf{FR}}' = D_{\mathbf{KL}}(\operatorname{softmax}(\phi(\mathcal{X}^{\mathcal{S}})/\tau)||\operatorname{softmax}(\phi(\mathcal{X}^{\mathcal{S}}_{\mathbf{EMA}})/\tau)), \ \mathcal{X}^{\mathcal{S}}_{\mathbf{EMA}} = \beta \mathcal{X}^{\mathcal{S}}_{\mathbf{EMA}} + (1-\beta)\mathcal{X}^{\mathcal{S}},$

Experiment

Dataset	IPC		Rest	Net-18		ResNet-50		ResNet-101		MobileNet-V2
	ne	SRe ² L	G-VBSM	RDED	EDC (Ours)	G-VBSM	EDC (Ours)	RDED	EDC (Ours)	EDC (Ours)
	1	-	-	22.9 ± 0.4	32.6 ± 0.1	-	30.6 ± 0.4	-	26.1 ± 0.2	20.2 ± 0.4
CIFAR-10	10	27.2 ± 0.4	53.5 ± 0.6	37.1 ± 0.3	79.1 ± 0.3	-	76.0 ± 0.3	-	67.1 ± 0.5	42.0 ± 0.4
	50	47.5 ± 0.5	59.2 ± 0.4	62.1 ± 0.1	87.0 ± 0.1		86.9 ± 0.0	2	85.8 ± 0.1	70.8 ± 0.2
	1	2.0 ± 0.2	25.9 ± 0.5	11.0 ± 0.3	39.7 ± 0.1	-	36.1 ± 0.5		32.3 ± 0.3	10.6 ± 0.3
CIFAR-100	10	31.6 ± 0.5	59.5 ± 0.4	42.6 ± 0.2	63.7 ± 0.3	-	62.1 ± 0.1	-	61.7 ± 0.1	44.3 ± 0.4
	50	49.5 ± 0.3	65.0 ± 0.5	62.6 ± 0.1	68.6 ± 0.2	-	69.4 ± 0.3	-	68.5 ± 0.1	59.5 ± 0.1
	1	<u> </u>	<u>i</u> 2	9.7 ± 0.4	39.2 ± 0.4	-	35.9 ± 0.2	3.8 ± 0.1	40.6 ± 0.3	18.8 ± 0.1
Tiny-ImageNet	10	-	2	41.9 ± 0.2	51.2 ± 0.5	-	50.2 ± 0.3	22.9 ± 3.3	51.6 ± 0.2	40.6 ± 0.6
	50	41.1 ± 0.4	47.6 ± 0.3	58.2 ± 0.1	57.2 ± 0.2	48.7 ± 0.2	58.8 ± 0.4	41.2 ± 0.4	58.6 ± 0.1	50.7 ± 0.1
ten Mariatello Statel	1	-	2	24.9 ± 0.5	45.2 ± 0.2	-	38.2 ± 0.1	21.7 ± 1.3	36.4 ± 0.1	36.4 ± 0.3
ImageNet-10	10	-	-	53.3 ± 0.1	63.4 ± 0.2	-	62.4 ± 0.1	45.5 ± 1.7	59.8 ± 0.1	54.2 ± 0.1
	50	-	-	75.5 ± 0.5	82.2 ± 0.1	-	80.8 ± 0.2	71.4 ± 0.2	80.8 ± 0.0	80.2 ± 0.2
	1	-		6.6 ± 0.2	12.8 ± 0.1	-	13.3 ± 0.3	5.9 ± 0.4	12.2 ± 0.2	8.4 ± 0.3
ImageNet-1k	10	21.3 ± 0.6	31.4 ± 0.5	42.0 ± 0.1	48.6 ± 0.3	35.4 ± 0.8	54.1 ± 0.2	48.3 ± 1.0	51.7 ± 0.3	45.0 ± 0.2
1.2	50	46.8 ± 0.2	51.8 ± 0.4	56.5 ± 0.1	58.0 ± 0.2	58.7 ± 0.3	64.3 ± 0.2	61.2 ± 0.4	64.9 ± 0.2	57.8 ± 0.1

Table 1: Comparison with the SOTA baseline dataset condensation methods. SRe²L and RDED utilize ResNet-18 for data synthesis, whereas G-VBSM and EDC leverage various backbones for this purpose.

Experiment

NEURAL INFORMATION PROCESSING SYSTEMS

IPC	Method	ResNet-18	ResNet-50	ResNet-101	MobileNet-V2	EfficientNet-B0	DeiT-Tiny	Swin-Tiny	ConvNext-Tiny	ShuffleNet-V2
	RDED	42.0	46.0	48.3	34.4	42.8	14.0	29.2	48.3	19.4
10	EDC (Ours)	48.6	54.1	51.7	45.0	51.1	18.4	38.3	54.4	29.8
	$+\Delta$	6.6	8.1	3.4	10.6	8.3	4.4	9.1	6.1	10.4
-	RDED	45.6	57.6	58.0	41.3	48.1	22.1	44.6	54.0	20.7
20	EDC (Ours)	52.0	58.2	60.0	48.6	55.6	24.0	49.6	61.4	33.0
	$+\Delta$	6.4	0.6	2.0	7.3	7.5	1.9	5.0	7.4	12.3
	RDED	49.9	59.4	58.1	44.9	54.1	30.5	47.7	62.1	23.5
30	EDC (Ours)	55.0	61.5	60.3	53.8	58.4	46.5	59.1	63.9	41.1
	$+\Delta$	5.1	2.1	2.2	8.9	4.3	16.0	11.4	1.8	17.6
20.257	RDED	53.9	61.8	60.1	50.3	56.3	43.7	58.1	63.7	27.7
40	EDC (Ours)	56.4	62.2	62.3	54.7	59.7	51.9	61.1	65.2	44.7
	$+\Delta$	2.5	0.4	2.2	4.4	3.4	8.2	3.0	1.5	17.0
	RDED	56.5	63.7	61.2	53.9	57.6	44.5	56.9	65.4	30.9
50	EDC (Ours)	58.0	64.3	64.9	57.8	60.9	55.0	63.3	66.6	45.7
	$+\Delta$	1.5	0.6	3.7	3.9	3.3	10.5	6.4	1.2	14.8

Table 2: Cross-architecture generalization comparison with different IPCs on ImageNet-1k. RDED refers to the latest SOTA method on ImageNet-1k and $+\Delta$ stands for the improvement for each architecture.

NEURAL INFORMATION PROCESSING SYSTEMS

Experiment

Design Choices	ς	ResNet-18	ResNet-50	ResNet-101	Design Choices	ResNet-18	ResNet-50	ResNet-101
CONFIG C	1.0	34.4	36.8	42.0	RDED	25.8	32.7	34.8
CONFIG C	1.5	38.7	42.0	46.3	RDED+(() () () ()	42.3	48.4	47.0
CONFIG C	2.0	38.8	45.8	47.9	G-VBSM+(())	34.4	36.8	42.0
CONFIG C	2.5	39.0	44.6	46.0	G-VBSM+(() ()	38.8	45.8	47.9
CONFIG C	3.0	38.8	45.6	46.2	G-VBSM+((8 (9 (0 (0)))	45.0	51.6	48.1

Table 3: Ablation studies on ImageNet-1k with IPC 10. Left: Explore the influence of the slowdown coefficient ζ with \mathbb{CONFIG} C. Right: Evaluate the effectiveness of real image initialization (③), smoothing LR schedule (④) and smaller batch size (④) with $\zeta = 2$.

Design Choices	Loss Type	Loss Weight	ς	β	au	ResNet-18	ResNet-50	DenseNet-121
CONFIG C			1.5	-	-	38.7	42.0	40.6
CONFIG D	$\mathcal{L}_{\mathbf{FR}}$	0.025	1.5	0.999	4	38.8	43.2	40.3
CONFIG D	LFR	0.25	1.5	0.999	4	37.9	43.5	40.3
CONFIG D	LFR	2.5	1.5	0.999	4	31.7	37.0	32.9
CONFIG D	LFR	0.25	1.5	0.99	4	39.0	43.3	40.2
CONFIG D	$\mathcal{L}'_{\mathbf{FR}}$	0.25	1.5	0.99	4	39.5	44.1	41.9
CONFIG D	\mathcal{L}'_{FR}	0.25	1.5	0.99	1	38.9	43.5	40.7
CONFIG D	vanilla SAM	0.25	1.5	-	2	38.8	44.0	41.2

Table 4: Ablation studies on ImageNet-1k with IPC 10. Investigate the potential effects of several factors, including loss type, loss weight, β , and τ , amid flatness regularization ((1)).

Experiment

NEURAL INFORMATION PROCESSING SYSTEMS

Design Choices	α	ς	Weak Augmentation Scale=(0.5,1.0)	EMA-based Evaluation EMA Rate=0.99	ResNet-18	ResNet-50	ResNet-101
CONFIG F	0.00	2.0	×	×	46.2	53.2	49.5
CONFIG F	0.00	2.0	1	×	46.7	53.7	49.4
CONFIG F	0.00	2.0	1	1	46.9	53.8	48.5
CONFIG F	0.25	2.0	×	×	46.7	53.4	50.6
CONFIG F	0.25	2.0	1	×	46.8	53.6	50.8
CONFIG F	0.25	2.0	1	1	47.1	53.7	48.2
CONFIG F	0.50	2.0	×	×	48.1	53.9	50.4
CONFIG F	0.50	2.0	1	×	48.4	53.9	52.7
CONFIG F	0.50	2.0	1	1	48.6	54.1	51.7
CONFIG F	0.75	2.0	×	×	46.1	52.7	51.0
CONFIG F	0.75	2.0	1	×	46.9	52.8	51.6
CONFIG F	0.75	2.0	1	1	47.0	53.2	49.3

Table 5: Ablation studies on ImageNet-1k with IPC 10. Evaluate the effectiveness of several design choices, including soft category-aware matching (2), weak augmentation (3) and EMA-based evaluation (3).

Figure 4: Application on ImageNet-1k. We evaluate the effectiveness of data-free network slimming and continual learning using VGG11-BN and ResNet-18, respectively.

SRe ² L	CDA	RDED	EDC	Original Dataset
18.5	22.6	25.6	26.8	38.5

Table 22: Comparison of Different Methods on ImageNet-21k.

THANK YOU!