

Historical Test-time Prompt Tuning for Vision Foundation Models

Jingyi Zhang¹, Jiaxing Huang¹, Xiaoqin Zhang², Ling Shao³, Shijian Lu¹ ¹ Nanyang Technological University ² Zhejiang University of Technology ³ General Terminus Technologies

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

1. Introduction: Motivation

Test-time Prompt Tuning learns and optimizes prompts from a continuous flow of unlabelled test samples during the inference stage.

Existing test-time prompt tuning methods tend to **'forget'** the historical knowledge learnt from previous test samples when the prompts are continuously updated.

2. Method: HisTPT - Overview

Knowledge Bank Construction:

HisTPT features three types of knowledge banks, i.e., *Local knowledge bank, Hard-sample knowledge bank, Global knowledge bank,* for learning and memorizing up-to-date, difficult and representative knowledge from previous test samples.

Adaptive Knowledge Retrieval Mechanism:

NANYANG

UNIVERSITY

TECHNOLOGICAL

HisTPT introduces an Adaptive Knowledge Retrieval Mechanism that enables adaptive retrieval of memorized knowledge for prediction regularization and prompt optimization of each test sample.

3. Method: HisTPT – Quantitative Results

Table 1: Test-time prompt tuning on semantic segmentation over 6 widely adopted datasets. mIoU is reported.

Method	Cityscapes	BDD	Mapillary	ADE	Pascal	$ACDC_{Fog}$	$ACDC_{Night}$	$ACDC_{Rain}$	$ACDC_{Snow}$	Mean
SEEM-Tiny	39.2	37.4	14.7	14.6	45.1	34.6	20.7	33.1	35.8	30.5
TPT [7] TPT [7] + HisTPT	42.3 45.1	38.9 41.8	15.4 17.5	16.1 17.6	46.8 49.4	35.2 37.2	21.4 22.9	34.9 37.2	36.5 37.8	31.9 34.0
DiffTPT [8] DiffTPT [8] + HisTPT	42.9 45.4	39.6 42.1	15.8 16.7	16.3 17.9	47.1 49.2	35.7 47.6	21.6 22.7	35.3 37.7	36.6 38.1	32.3 35.2
HisTPT	44.7	41.2	17.2	17.3	48.7	36.8	22.1	36.7	37.1	33.5
SEEM-Large	49.3	44.6	18.7	15.2	37.1	48.1	32.0	47.4	45.0	37.4
TPT [7] TPT [7] + HisTPT	50.1 52.1	45.2 47.4	19.1 21.3	15.7 17.1	40.2 45.8	48.7 52.1	32.4 33.4	47.9 49.4	45.7 48.8	38.3 40.8
DiffTPT [8] DiffTPT [8] + HisTPT	50.4 52.4	45.7 47.8	19.3 21.1	16.1 17.4	41.2 46.3	49.1 52.4	32.2 33.6	48.2 49.7	46.3 49.1	38.7 41.0
HisTPT	51.9	47.3	20.1	16.9	45.7	51.6	33.1	49.1	48.5	40.4

4. Method: HisTPT – Ablation Studies

Table 4: Ablation study of the proposed HisTPT over Cityscapes semantic segmentation task.

Method		Histrocial Knowledge Banks	Adaptive knowledge retrieval	mIoU	
	local knowledge bank	hard-sample knowledge bank	global knowledge bank	· · · · · · · · · · · · · · · · · · ·	
SEEM-Tiny					39.2
	\checkmark				41.1
		\checkmark			40.9
			\checkmark		41.7
	\checkmark	\checkmark			42.2
	\checkmark		\checkmark		42.8
		\checkmark	\checkmark		42.5
	\checkmark	\checkmark	\checkmark		43.6
HisTPT	\checkmark	\checkmark	\checkmark	\checkmark	44.7

Table 6: Test-time prompt tuning on semantic segmentation across continuously changing test domains. mIoU is reported.

Test Order (\rightarrow)	Normal	Fog	Night	Rain	Snow
SEEM-Tiny	39.2	34.6	20.7	33.1	35.8
TPT	42.3(+3.1)	34.8(+0.2)	20.1(-0.6)	31.7(-1.4)	30.6(-5.2)
DiffTPT	42.9(+3.7)	35.2(+0.6)	20.3(-0.4)	32.0(-1.1)	31.4(-4.4)
HisTPT	44.7(+5.5)	36.9(+2.3)	23.6(+2.9)	37.3(+4.2)	38.1(+2.3)

Test Order (\rightarrow)	Snow	Rain	Night	Fog	Normal
SEEM-Tiny	35.8	33.1	20.7	34.6	39.2
TPT DiffTPT	36.5(+0.7) 36.6(+0.8)	34.1(+1.0) 34.7(+1.6)	20.1(-0.6) 20.5(-0.2)	32.7(-1.9) 32.9(-1.7)	35.8(-3.4) 36.1(-3.1)
HisTPT	37.1(+1.3)	36.8(+3.7)	22.1(+1.4)	37.0(+2.4)	44.9(+5.7)

(a)

(b)

HisTPT improves the performance consistently across different weathers.

6. Method: HisTPT – Qualitative Results

Figure 6: Qualitative comparison of HisTPT with the baseline model (SEEM-Tiny) [3] and TPT [7] over semantic segmentation task on Cityscapes.

Historical Test-time Prompt Tuning for Vision Foundation Models

Thank you!

Jingyi Zhang¹, Jiaxing Huang¹, Xiaoqin Zhang², Ling Shao³, Shijian Lu¹

¹ Nanyang Technological University ² Zhejiang University of Technology ³ General Terminus Technologies