VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections Roy Miles, Pradyumna Reddy, Ismail Elezi, Jiankang Deng

Compress activations by projected by dividing and projecting the tokens during the forward pass.

$\mathbf{Z} \xrightarrow{group(\cdot)} \mathbf{z} \in \mathbb{R}^{B \times ND/M \times M}$

Compress activations by first dividing the activations into sub-tokens and then computing their cosine similarity to a frozen vector v. The sub-token size can control the level of compression and subsequently the memory reduction for training.

2

Reconstruct an approximation of the original activations by projecting back onto v. Through careful initialization for v, we can preserve a lot of structural information needed for good convergence and model performance.

 $\mathbf{z}_p \xrightarrow{reconstruct(\cdot ; \mathbf{v})} \hat{\mathbf{z}} \in \mathbb{R}^{B \times ND/M \times M} \xrightarrow{ungroup(\cdot)} \hat{\mathbf{Z}} \in \mathbb{R}^{B \times N \times D}$

TLDR;

Result: Significant memory reduction for both fine-tuning and pre-training LLMs!

)
$$\mathbf{z}_p \in \mathrm{I\!R}^{B \times ND/M \times 1}$$

Query	Key	Value	Down	Memory (GB)	Acc
	— no	one —		1.67	38.1
✓				1.42	36.2
	\checkmark			1.42	36.2
		\checkmark		1.42	36.7
			\checkmark	1.01	38.9
✓		✓		1.18	37.4
		\checkmark	\checkmark	0.76	39.5
\checkmark		\checkmark	\checkmark	0.51	38.4
\checkmark	\checkmark	\checkmark	\checkmark	0.24	37.0

Epochs	QLoRA	VeLoRA
1	36.4	36.7
2	37.3	37.5
3	38.4	38.1
4	39.1	39.5

M	Memory (MB)	Ac
D / 64	865	37.
D/32	808	39.
D / 16	779	39.
D/8	764	37.

Method	Acc
Random	36.8
SVD	37.1
Fixed average	39.5
Running average	38.9

Layer Selection

VeLoRA is most effective on the down projection layers where the input activations are large.

Convergence

Despite approximating the gradients, we find that VeLoRA does not impact the training converge for pre-training or finetuning.

Sub-Token Size

Sub-token size provides a way of tuning the memory v.s. performance trade-off.

Initialization

Initialization strategy for v is important for maintaining good performance. We find a simple batch average is very effective.

LORA

$$y = Wx + ABx = (W + AB)x$$

Following common practice and the derivation given by FLoRA [1], we can express the update as:

$$W' = W + A_0 \left(B_0 - \eta \frac{dL}{dB} \right) \approx \left[W - \eta \tilde{g} A_0 \right]$$

LoRA does induce low-rank gradient updates.

Pretitaining

	60M	130M			-		_	
Full-Rank	33.52 (1.30G)	25.08 (2.32G)	LLaMA Size	,	7B	1	3B	Mean
Galore	34 88 (1 27G)	25 36 (2 02G)	Method	Alpaca	Memory	Alpaca	Memory	
LoRA	34.99 (0.86G)	33.92 (1.24G)	LoRA w/ BFloat16	38.4	8.79	47.2	15.82	42.8
FLoRA	34.35 (1.27G)	25.88 (2.01G)	LoRA w/ Float4	37.2	5.77	47.3	9.91	42.3
VeLoRA	33.76 (1.18G)	25.29 (1.83G)	QLoRA	39.0	5.77	47.5	9.91	43.3
			+ VeLoRA	39.5	4.88	48.0	8.48	43.8
r/d_{model} Training Tokens	128 / 256 1.1B	256 / 768 2.2B						

We confirm the effectiveness of our algorithm as being complimentary to many stateof-the-art PEFT methods on the VTAB-1k fine-tuning benchmark. Furthermore, we outperform QLoRA for fine-tuning LLaMA and show competitive performance against other memory-efficient pre-training methods on the large-scale C4 dataset.

References

[1] T. Dettmers, et. al. Qlora: Efficient finetuning of quantized llms. NeurIPS 2023 [2] E. J. Hu, et. al. Lora: Low-rank adaptation of large language models. ICLR 2022.

[3] Y. Hao, et. al. Flora: Low-rank adapters are secretly gradient compressors, 2024. ICML 2024

Implementation is quite simple!

NEURAL INFORMATION PROCESSING SYSTEMS

Velora

 $\frac{dL}{dW} \approx \frac{dL}{dy} \cdot \left(\left(\frac{dy}{dW} \cdot v \right) v^T \right) = \left(\frac{dL}{dy} \cdot \frac{dy}{dW} \right) vv^T$

For simplicity, consider the case of a single sub-token. VeLoRA projects this sub-token using a fixed rank-1 projection.

$$W' = W - \eta \frac{dL}{dW} = W - \eta \tilde{g} v v^T$$

VeLoRA can be seen through the lens of LoRA using a data-driven initialization for A.

Fine-tuning

		Gitlub
Alg	orithm 1 VeLoRA, Pytorch-like	
def	<pre>forward(input, weight, v): # v: M x 1</pre>	
	<pre># forward compute is preserved out = input @ weight</pre>	
	<pre># compute vector similarity z = compress(group(input), v)</pre>	
	<pre>save_for_backward(z, weight, v) return out</pre>	
def	backward(ctx, grad_output):	▝▝▖▖▐▔▖▞▔▖▞▔▖
	z, weight, v = saved_tensors	
	# reconstruct the input	
	<pre>input = ungroup(reconstruct(z, v))</pre>	
	# compute gradients	
	grad_input = grad_output @ weight	
	<pre>grad_weight = grad_output.T @ input</pre>	
	return grad_input, grad_weight	