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The scope of our work

▶ Assuming all confounders are observed, how can we efficiently estimate the effect
of any potential sequence of future treatments on subsequent responses over
extended forecasting horizons?
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▶ Literature Overview

Model Backbone Long-Term
Forecast?

Learning Depen-
dencies

Contrastive
Learning

Inference Effi-
ciency

Selection Bias
Handling

Representation In-
vertibility

Our Model GRU Yes Contrastive Predic-
tive Coding

Yes High Balanced Rep. InfoMax

Causal Trans-
former [1]

3 Transformers Yes Transformer N/A Low Balanced Rep. N/A

G-Net [2] LSTM No N/A N/A Very Low G-Computation Covariates Xt

CRN [3] LSTM No N/A N/A High Balanced Rep. N/A

RMSN [4] LSTM No N/A N/A High Weighting N/A

MSM [5] Logistic + Linear No N/A N/A High Weighting N/A

▶ Research Gap
▶ Handling Long-Term Dependencies Most models, except the Causal Transformer,

struggle with capturing long-term dependencies in time-varying settings.
▶ Computational Challenge Inference requires evaluating multiple counterfactual

trajectories per individual and time step, significantly increasing test units. Efficiency is
essential.

▶ Lack of Representation Invertibility Most baseline models learn a representation of
the confounding history, but none enforce its invertibility to ensure that confounding
information is retained.

Lack of Representation Invertibility Most baseline models learn a representation
of the confounding variables, but none enforce invertibility to ensure that
confounding information is retained, leading to potential bias in counterfactual
estimation.
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Contributions

☞ We leverage Contrastive Predictive Coding (CPC) [6], [7] with InfoNCE to cap-
ture long-term dependencies in process history, a novel approach in counter-
factual regression over time.

☞ We adopt Information Maximization (InfoMax) [8], [9] to retain confounding in-
formation by prioritizing input reconstruction from the representation, reducing
bias in counterfactual estimates.

☞ Using a simple GRU layer as the backbone, we show that well-designed regu-
larization can outperform more complex transformer models.
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Main setting: Potential Outcome Framework

▶ For each individual i and time t, we have:
▶ Discrete treatment Wit ∈ W = {0, 1, . . . ,K − 1}.
▶ Continuous Outcome Yit ∈ Y ⊂ R.
▶ Time-varying confounders Xit ∈ X ⊂ Rdx .
▶ Static confounders V ∈ V ⊂ Rdv .
▶ The history process Ht+1 = [V,X≤t+1,W≤t,Y≤t].

Y≤t

W≤t

X≤t

Yt+1

Wt+1

Xt+1

V

Figure: Causal graph over Ht+1

★ Goal Assuming Sequential ignorability [10], estimate the expected counterfac-
tual outcome for any ωt+1:t+τ :

E(Yt+τ (ωt+1:t+τ ) | Ht+1) = E (Yt+τ | Ht+1,Wt+1:t+τ = ωt+1:t+τ ) .
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Encoding step 1: Learn a context of the process Ht

GRU GRU

Process History

GRU

} } }
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Encoding step 2: Contrastive Predictive Coding

GRU GRU

Process History

GRU

} } } } }
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Encoding step 3: InfoMax

GRU GRU

Process History

Historical subsequence Future subsequence

Encode

Encode

GRU

} } } } }
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Encoder pertaining: Loss

★ Encoder loss Lenc = LCPC + L(InfoMax).
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Encoder fine-tuning and Decoder training
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CPC
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Encoder fine-tuning and Decoder training
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Encoder fine-tuning and Decoder training
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Legend:
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Encoder Fine-Tuning and Decoder Training: Adversarial loss

▶ To address selection bias, we aim for Φ(Ht) ⊥⊥ Wt, or equivalently, I(Φ(Ht),Wt) = 0.
▶ Let ICLUB represent the CLUB upper bound of mutual information [11], with q(.) as a

treatment classifier network.
▶ Let LY(θR, θY) be the loss to predicting the factual responses Yt+1, . . . ,Yt+τ given the

sequence of treatments (Wt+1, . . . ,Wt+τ ).

★ Decoder Adversarial Training We fine-tune the encoder by optimizing the
factual outcome and treatment networks in the adversarial game:

min
θR,θY

Ldec(θR, θY , θW) = LY(θR, θY) + ICLUB(ΦθR(Ht),Wt+1; qθW ),

min
θW

LW(θW , θR) = −EΦθR (Ht) [log qθW (Wt+1 | ΦθR(Ht))] .
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Experiments with semi-synthetic MIMIC III data

▶ Estimate the counterfactual blood pressure following a sequence of treatments
made of vasopressors and mechanical ventilation.

Table: Results on the MIMIC III semi-synthetic reported by RMSEs. Smaller is better.

Model τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8 τ = 9 τ = 10
Causal CPC (ours) 0.32±0.04 0.45±0.08 0.54±0.06 0.61 ±0.10 0.66± 0.10 0.69±0.11 0.71± 0.11 0.73± 0.06 0.75 ± 0.05 0.77± 0.10

CT 0.42 ± 0.38 0.40± 0.06 0.52± 0.08 0.60± 0.005 0.67±0.10 0.72 ±0.12 0.77±0.13 0.81±0.14 0.85 ±0.16 0.88 ±0.17
G-Net 0.54 ± 0.13 0.72±0.14 0.85 ±0.16 0.96 ± 0.17 1.05 ± 0.18 1.14 ±0.18 1.24± 0.17 1.33±0.16 1.41 ± 0.16 1.49±0.16
CRN 0.27 ±0.03 0.45±0.08 0.58 ± 0.09 0.72± 0.11 0.82± 0.15 0.92 ± 0.20 1.00 ± 0.25 1.06 ± 0.28 1.12 ± 0.32 1.17 ± 0.35

RMSN 0.40 ± 0.16 0.70 ± 0.21 0.80± 0.19 0.88 ± 0.17 0.94 ± 0.16 1.00 ± 0.15 1.05 ± 0.14 1.10 ± 0.14 1.14 ± 0.13 1.18 ± 0.13
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Computational Efficiency and Model Complexity

Computational Efficiency and Model Complexity

Table: Models complexity and the running time averaged over five seeds. Results are reported for
tumor growth simulation (γ = 1). Hardware: GPU-1xNVIDIA Tesla M60.

Model Trainable parameters (k) Training time (min) Prediction time (min)

Causal CPC (encoder + decoder) 8.2 16± 3 4 ± 1
CT 11 12± 2 30± 3
G-Net 1.2 2 ± 0.5 35 ± 3
CRN 5.2 13± 2 4± 1
RMSN 1.6 22± 2 4± 1
MSM <0.1 1±0.5 1±0.5
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Ablation Study Results on MIMIC III
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Discussion

▶ Conclusion
▶ Proposed a novel, computationally efficient approach to long-term

counterfactual regression by combining RNNs with contrastive
learning, achieving SOTA performance without complex transformer
models.

▶ Future work
▶ While our model is designed for long-term predictions, it may not

consistently outperform SOTA for short-horizon tasks. A trade-off
could be achieved by adjusting the contrastive term weights across
time steps, which we leave for future work.

Scan for paper
link
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