

Causal Contrastive Learning for Counterfactual Regression Over Time

Mouad El Bouchattaoui^{1,2} Myriam Tami¹ Benoit Lepetit² Paul-Henry Cournède¹

¹Paris-Saclay University, CentraleSupélec, MICS Lab, France

²Saint-Gobain, France

NeurIPS 2024 Pre-Recorded Talk

Introduction

The scope of our work

Assuming <u>all confounders are observed</u>, how can we <u>efficiently</u> estimate the effect of any potential sequence of future treatments on subsequent responses over <u>extended</u> forecasting horizons?

•
•
ρ

Literature Overview

Model	Backbone	Long-Term Forecast?	Learning Depen- dencies	Contrastive Learning	Inference Effi- ciency	Selection Bias Handling	Representation In- vertibility	
Our Model	GRU	Yes	Contrastive Predic- tive Coding	Yes	High Balanced Rep. InfoM		InfoMax	
Causal Trans- former [1]	3 Transformers	Yes	Transformer	N/A	Low	.ow Balanced Rep.		
G-Net [2]	LSTM	No	N/A	N/A	Very Low	G-Computation	Covariates X _t	
CRN [3]	LSTM	No	N/A	N/A	High Balanced Rep.		N/A	
RMSN [4]	LSTM	No	N/A	N/A	High	Weighting	N/A	
MSM [5]	Logistic + Linear	No	N/A	N/A	High Weighting		N/A	

Research Gap

- Handling Long-Term Dependencies Most models, except the Causal Transformer, struggle with capturing long-term dependencies in time-varying settings.
- Computational Challenge Inference requires evaluating multiple counterfactual trajectories per individual and time step, significantly increasing test units. Efficiency is essential.
- Lack of Representation Invertibility Most baseline models learn a representation of the confounding history, but none enforce its invertibility to ensure that confounding information is retained.

We adopt Information Maximization (InfoMax) [8], [9] to retain confounding information by prioritizing input reconstruction from the representation, reducing bias in counterfactual estimates.

Using a simple GRU layer as the backbone, we show that well-designed regularization can outperform more complex transformer models.

Experiments

Conclusior

References

Main setting: Potential Outcome Framework

- ► For each individual *i* and time *t*, we have:
- Discrete treatment $W_{it} \in \mathcal{W} = \{0, 1, \dots, K-1\}.$
- **Continuous Outcome** $Y_{it} \in \mathcal{Y} \subset \mathbb{R}$.

Introduction

- Time-varying confounders $\mathbf{X}_{it} \in \mathcal{X} \subset \mathbb{R}^{d_x}$.
- Static confounders $\mathbf{V} \in \mathcal{V} \subset \mathbb{R}^{d_v}$.
- ▶ The history process $\mathbf{H}_{t+1} = [\mathbf{V}, \mathbf{X}_{\leq t+1}, W_{\leq t}, Y_{\leq t}].$

Figure: Causal graph over \mathbf{H}_{t+1}

Goal Assuming Sequential ignorability [10], estimate the expected counterfactual outcome for any $\omega_{t+1:t+\tau}$:

$$\mathbb{E}(Y_{t+\tau}(\omega_{t+1:t+\tau}) \mid \mathbf{H}_{t+1}) = \mathbb{E}(Y_{t+\tau} \mid \mathbf{H}_{t+1}, W_{t+1:t+\tau} = \omega_{t+1:t+\tau}).$$

Modeling

Introduction

Experiments

Conclusion

References

Encoding step 1: Learn a context of the process H_t

Introduction

Experiments

Encoding step 2: Contrastive Predictive Coding

Encoding step 3: InfoMax

Encoder pertaining: Loss

★ Encoder loss $\mathcal{L}_{enc} = \mathcal{L}^{CPC} + \mathcal{L}^{(InfoMax)}$.

Encoder fine-tuning and Decoder training

Introduction

Modeling

Encoder fine-tuning and Decoder training

Introduction

Encoder fine-tuning and Decoder training

Encoder Fine-Tuning and Decoder Training: Adversarial loss

- To address selection bias, we aim for $\Phi(\mathbf{H}_t) \perp W_t$, or equivalently, $I(\Phi(\mathbf{H}_t), W_t) = 0$.
- Let I_{CLUB} represent the CLUB upper bound of mutual information [11], with q(.) as a treatment classifier network.
- ► Let $\mathcal{L}_Y(\theta_R, \theta_Y)$ be the loss to predicting the factual responses $Y_{t+1}, \ldots, Y_{t+\tau}$ given the sequence of treatments $(W_{t+1}, \ldots, W_{t+\tau})$.

★ Decoder Adversarial Training We fine-tune the encoder by optimizing the factual outcome and treatment networks in the adversarial game:

$$\begin{split} \min_{\theta_{R},\theta_{Y}} \mathcal{L}_{dec}(\theta_{R},\theta_{Y},\theta_{W}) &= \mathcal{L}_{Y}(\theta_{R},\theta_{Y}) + I_{\mathsf{CLUB}}(\Phi_{\theta_{R}}(\mathbf{H}_{t}),W_{t+1};q_{\theta_{W}}),\\ \min_{\theta_{\theta_{Y}}} \mathcal{L}_{W}(\theta_{W},\theta_{R}) &= -\mathbb{E}_{\Phi_{\theta_{R}}(\mathbf{H}_{t})}\left[\log q_{\theta_{W}}(W_{t+1} \mid \Phi_{\theta_{R}}(\mathbf{H}_{t}))\right]. \end{split}$$

Experiments

Experiments with semi-synthetic MIMIC III data

Estimate the counterfactual blood pressure following a sequence of treatments made of vasopressors and mechanical ventilation.

Table: Results on the MIMIC III semi-synthetic reported by RMSEs. Smaller is better.

Model	$\tau = 1$	$\tau = 2$	$\tau = 3$	$\tau = 4$	$\tau = 5$	$\tau = 6$	$\tau = 7$	$\tau = 8$	$\tau = 9$	$\tau = 10$
Causal CPC (ours)	0.32±0.04	0.45±0.08	0.54±0.06	0.61 ±0.10	0.66± 0.10	0.69±0.11	0.71 ± 0.11	0.73± 0.06	$\textbf{0.75} \pm \textbf{0.05}$	0.77± 0.10
СТ	0.42 ± 0.38	0.40 ± 0.06	0.52± 0.08	$\textbf{0.60}{\pm}~\textbf{0.005}$	0.67±0.10	0.72 ±0.12	0.77±0.13	0.81±0.14	0.85 ±0.16	0.88 ±0.17
G-Net	0.54 ± 0.13	0.72±0.14	0.85 ±0.16	0.96 ± 0.17	1.05 ± 0.18	1.14 ±0.18	1.24 ± 0.17	1.33±0.16	1.41 ± 0.16	1.49±0.16
CRN	0.27 ±0.03	0.45±0.08	0.58 ± 0.09	0.72± 0.11	0.82 ± 0.15	0.92 ± 0.20	1.00 ± 0.25	1.06 ± 0.28	1.12 ± 0.32	1.17 ± 0.35
RMSN	0.40 ± 0.16	0.70 ± 0.21	0.80± 0.19	0.88 ± 0.17	0.94 ± 0.16	1.00 ± 0.15	1.05 ± 0.14	1.10 ± 0.14	1.14 ± 0.13	1.18 ± 0.13

Introduction

Computational Efficiency and Model Complexity

Modeling

Computational Efficiency and Model Complexity

Table: Models complexity and the running time averaged over five seeds. Results are reported for tumor growth simulation ($\gamma = 1$). Hardware: GPU-1xNVIDIA Tesla M60.

Model	Trainable parameters (k)	Training time (min)	Prediction time (min)
Causal CPC (encoder + decoder)	8.2	16 ± 3	4 ± 1
СТ	11	12 ± 2	30 ± 3
G-Net	1.2	2 ± 0.5	35 ± 3
CRN	5.2	13 ± 2	4± 1
RMSN	1.6	22 ± 2	4± 1
MSM	<0.1	1±0.5	1±0.5

Ablation Study Results on MIMIC III

Introduction

Conclusion

Discussion

Conclusion

Proposed a novel, computationally efficient approach to long-term counterfactual regression by combining RNNs with contrastive learning, achieving SOTA performance without complex transformer models.

Future work

While our model is designed for long-term predictions, it may not consistently outperform SOTA for short-horizon tasks. A trade-off could be achieved by adjusting the contrastive term weights across time steps, which we leave for future work.

References I

- [1] V. Melnychuk, D. Frauen, and S. Feuerriegel, "Causal transformer for estimating counterfactual outcomes," *ArXiv*, vol. abs/2204.07258, 2022.
- [2] R. Li, S. Hu, M. Lu, *et al.*, "G-net: A recurrent network approach to g-computation for counterfactual prediction under a dynamic treatment regime," in *ML4H@NeurIPS*, 2021.
- [3] I. Bica, A. M. Alaa, J. Jordon, and M. van der Schaar, "Estimating counterfactual treatment outcomes over time through adversarially balanced representations," *arXiv preprint arXiv:2002.04083*, 2020.
- [4] B. Lim, "Forecasting treatment responses over time using recurrent marginal structural networks," *advances in neural information processing systems*, vol. 31, 2018.

References II

- [5] J. M. Robins, M. A. Hernan, and B. Brumback, *Marginal structural models and causal inference in epidemiology*, 2000.
- [6] A. v. d. Oord, Y. Li, and O. Vinyals, "Representation learning with contrastive predictive coding," *arXiv preprint arXiv:1807.03748*, 2018.
- [7] O. Henaff, "Data-efficient image recognition with contrastive predictive coding," in *International conference on machine learning*, PMLR, 2020, pp. 4182–4192.
- [8] R. Linsker, "Self-organization in a perceptual network," *Computer*, vol. 21, no. 3, pp. 105–117, 1988.
- [9] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, et al., "Learning deep representations by mutual information estimation and maximization," in *International Conference on Learning Representations*, 2019. [Online]. Available: https://openreview.net/forum?id=Bklr3j0cKX.

References III

- [10] J. M. Robins and M. A. Hernán, "Estimation of the causal effects of time-varying exposures," *Longitudinal data analysis*, vol. 553, p. 599, 2009.
- [11] P. Cheng, W. Hao, S. Dai, J. Liu, Z. Gan, and L. Carin, "Club: A contrastive log-ratio upper bound of mutual information," in *International conference on machine learning*, PMLR, 2020, pp. 1779–1788.