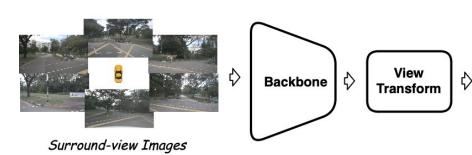
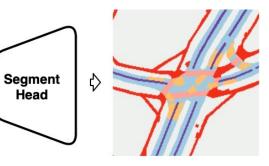


VQ-Map: Bird's-Eye-View Map Layout Estimation in Tokenized Discrete Space via Vector Quantization


Yiwei Zhang· Jin Gao · Fudong Ge · Bing Li


Zhaoxiang Zhang \cdot Haibin Ling \cdot Weiming Hu

State Key Laboratory of Multimodal Artificial Intelligence Systems(MAIS), CASIA School of Artificial Intelligence, University of Chinese Academy of Sciences School of Information Science and Technology, ShanghaiTech University Center for Artificial Intelligence and Robotics, HKISI, CAS, People AI Stony Brook University

Background and Motivations

BEV Map Segmentation Pipeline for Map Layout Estimation

Many challenges

- Occlusion

Artifacts

- Low resolution
- Unfavourable imaging conditions

Inaccurate dense BEV features

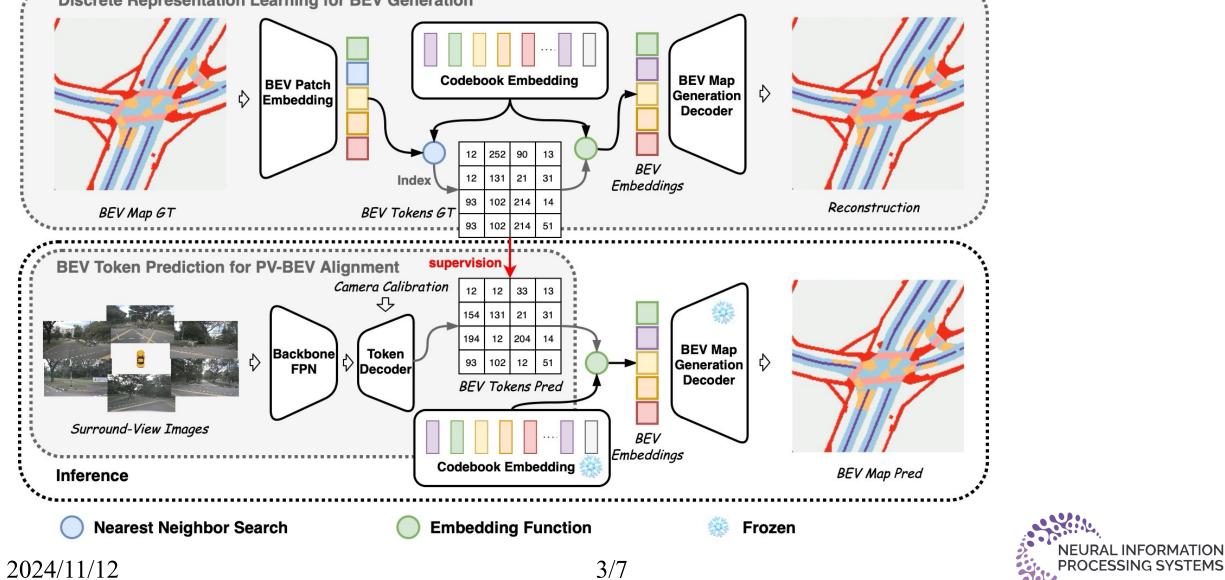
Incoherent and Unrealistic results

Lack of Prior knowledge

BEVFusion

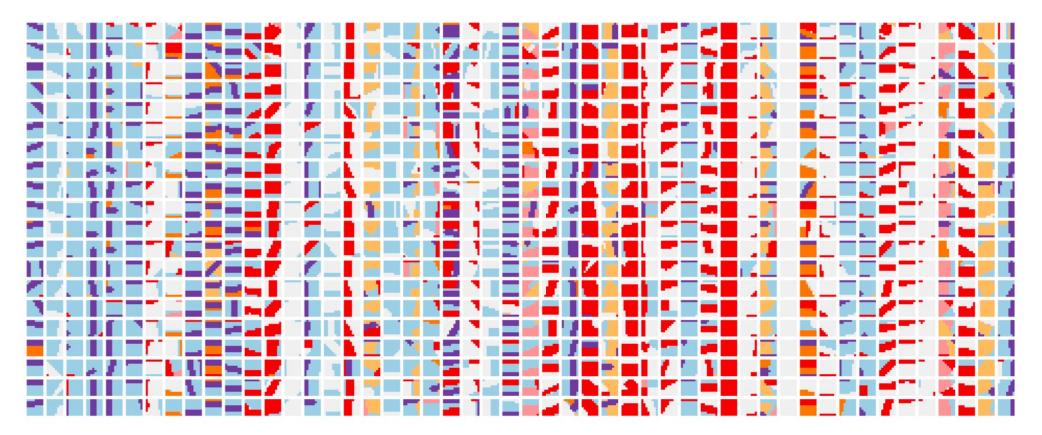
Leverage generative models to learn this prior knowledge

> How to align the PV features with the generative models to facilitate BEV map estimation NEURAL INFORMATION PROCESSING SYSTEMS



2024/11/12

VQ-Map


Discrete Representation Learning for BEV Generation

What Has the Codebook Embedding Learned?

All BEV patch images in the same column correspond to the same token.

Results

Surround-View Map Layout Estimation Result

	IoU↑(%)							
Methods	Drivable	Ped. Cross.	Walkway	Stopline	Carpark	Divider	Mean	
OFT [36]	74.0	35.3	45.9	27.5	35.9	33.9	42.1	
LSS [3]	75.4	38.8	46.3	30.3	39.1	36.5	44.4	
CVT [37]	74.3	36.8	39.9	25.8	35.0	29.4	40.2	
M ² BEV [38]	77.2	-	-	-	-	40.5	-	
BEVFusion [1]	81.7	54.8	58.4	47.4	50.7	46.4	56.6	
MapPrior [17]	81.7	54.6	58.3	46.7	53.3	45.1	56.7	
X-Âlign [34]	82.4	55.6	59.3	49.6	53.8	47.4	58.0	
MetaBEV [35]	83.3	56.7	61.4	50.8	55.5	48.0	59.3	
DDP [19]	83.6	58.3	61.6	52.4	51.4	49.2	59.4	
VQ-Map	83.8	60.9	64.2	57.7	55.7	50.8	62.2	

Monocular Map Layout Estimation Result

		Argoverse [10]				
Methods	Drivable Crossing Walkway Carpark Mean		Drivable			
IPM [39]	40.1	-	14.0	-	-	43.7
Depth Unpr. [39]	27.1	-	14.1	-	-	33.0
VÊD [40]	54.7	12.0	20.7	13.5	25.2	62.9
VPN [41]	58.0	27.3	29.4	12.9	31.9	64.9
PON [39]	60.4	28.0	31.0	18.4	34.5	65.4
DiffBEV [20]	65.4	41.3	41.1	28.4	44.1	-
GitNet [42]	65.1	41.6	42.1	31.9	45.2	67.1
TaDe [16]	65.9	40.9	42.3	30.7	45.0	68.3
VQ-Map	70.0	43.9	43.8	32.7	47.6	73.4

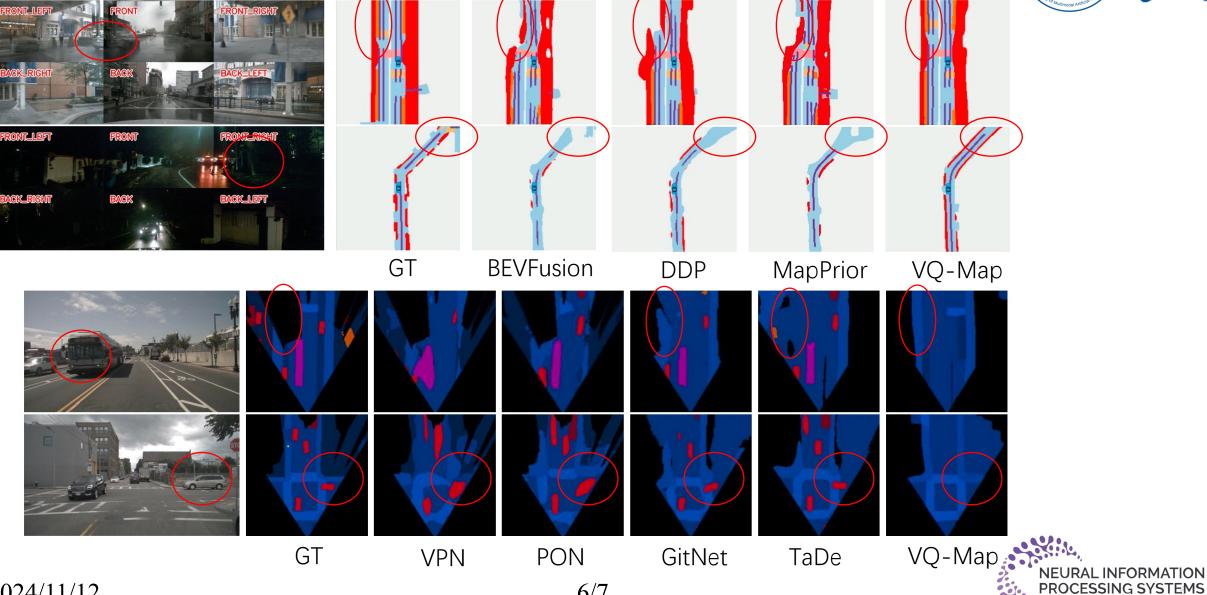
VQ-Map establishes new state-of-the-art performance on camerabased BEV semantic map layout estimation.

Ablation Study

		(a)	(b)	(c)	(d)	(e)	(f)	(g)
Arch.	Sparse Feature			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Codebook Embedding		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Supervi	ision	Μ	$\{k_q^i\}_{i=1}^N$	Μ	$\{\mathbf{z}_{c}^{i}\}_{i=1}^{N}$	$\{\mathbf{z}_q^i\}_{i=1}^N$	$\{k_q^i\}_{i=1}^N$	$\{k_q^i\}_{i=1}^N$
Drivable		81.5	80.4	83.9	82.5	82.5	83.6	83.5
Ped. Cross.		54.2	52.9	60.0	59.7	59.1	60.1	59.9
Walkway		58.1	58.2	63.5	62.2	62.1	63.5	63.4
Stop Li	ne	46.1	47.2	53.2	55.1	54.9	56.8	56.8
Carpark		53.2	52.7	51.0	53.4	53.1	56.2	55.1
Divider		45.3	46.6	46.9	48.9	49.0	50.3	50.7
Mean		56.4	56.3	59.8	60.3	60.1	61.8	61.6
Improvements			-0.1	3.4	3.9	3.7	5.4	5.2

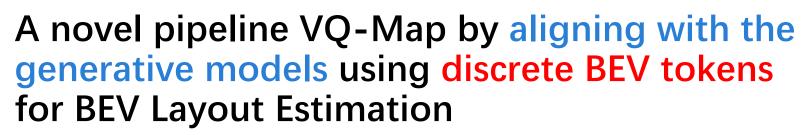
As a PV-BEV alignment method, token classification is more effective than value regression.

Computational overhead analysis


Method	mIoU^(%)	Params↓(M)	$MACs\downarrow(G)$	Training Time↓(h)
BEVFusion	56.6	50.1	155.5	100
MapPrior	56.7	719.1	396.0	>200
DDP(3 steps)	59.4	53.6	614.1	160
VQ-Map(tiny)	59.6	44.2	86.8	30+74=104
VQ-Map(light)	60.1	81.9	137.3	35+80=115
VQ-Map	62.2	108.3	231.6	35+96=131

Our approach not only demonstrates strong performance, but also saves much computational cost in comparison to the recent SOTA methods MapPrior and DDP.

Visualization



2024/11/12

6/7

Conclusion

- VQ-Map gets new state-of-the-art performance on camera-based BEV semantic segmentation.
- The core components of our method are the codebook embedding constructed via vector quantization, serving as a bridge between PV and BEV.
- As a PV-BEV alignment method, token classification is more effective than value regression.

Code

