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Context

A winning trio:

feedforward nets + backprop (BP) + GPUs

... yet extremely energy consuming



An alternative:

energy-based models + equilibrium propagation + analog systems?
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          (EBMs)

‘‘Forward pass’’ = energy minimization: ∇1𝐸 𝑠, 𝜃, 𝑥 = 0
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An alternative:

energy-based models + equilibrium propagation [1] + analog systems?

                                                       (EP)

Gradient computation with ‘‘forward passes’’ only  

(beyond zeroth order [2] and without heuristics [3]):

𝑑𝐶 

𝑑𝜃
≈𝛽→0

1

2𝛽
 (∇2𝐸 𝑠𝛽 , 𝜃, 𝑥 − ∇2𝐸 𝑠−𝛽 , 𝜃, 𝑥  

∇1𝐸 𝑠±𝛽 , 𝜃, 𝑥 ± 𝛽ℓ(𝑠±𝛽 , 𝑦) = 0with:

Context

[1] Scellier, B., & Bengio, Y. (2017). "Equilibrium propagation: Bridging the gap between energy-based models and backpropagation"

[2] Malladi, Sadhika, et al (2023). "Fine-tuning language models with just forward passes"
[3] Hinton, G. (2022). "The forward-forward algorithm: Some preliminary investigations"



An alternative:

energy-based models + equilibrium propagation + analog systems?

∇1𝐸 𝑠, 𝜃, 𝑥 = 0 ≡
[1,2]

Context

[1] Kendall, Jack, et al (2020). "Training end-to-end analog neural networks with equilibrium propagation"

[2] Scellier, B. (2024). "A Fast Algorithm to Simulate Nonlinear Resistive Networks"



Analog at scale requires digital circuitry [1]

- Need for a new building block to model 

such systems

      

- Need for an associated algorithm to compute 

gradients end-to-end

Problem

[1] Yi, S. I., Kendall, J. D., Williams, R. S., & Kumar, S. (2023). "Activity-difference training of deep neural networks using memristor crossbars."



Analog at scale requires digital circuitry [1]

- Need for a new building block to model 

such systems

      → ff-EBMs

- Need for an associated algorithm to compute 

gradients end-to-end

→ EP-BP gradient chaining

Problem

[1] Yi, S. I., Kendall, J. D., Williams, R. S., & Kumar, S. (2023). "Activity-difference training of deep neural networks using memristor crossbars."



Feedforward-tied EBMs (ff-EBMs)

≜ analog parts = EB block

≜ digital parts = Feedforward (ff) block



Feedforward-tied EBMs (ff-EBMs)



BP-EP gradient chaining

ff-EBM inference



BP-EP gradient chaining

ff-EBM inference ff-EBM gradient computation (Theorem 3.1) 

EP through EB blocks…

…BP through ff blocks



Static gradient analysis

• Architecture :

15 layers in total, 6 EB blocks and 6 ff blocks with heterogenous 

block sizes.

• Algorithmic baseline:

end-to-end automatic differentiation (AD) 

through equilibrium computation

• Experiment:

pick random (x, y) and compare BP-EP

chaining gradients to AD gradients
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• Architecture :

15 layers in total, 6 EB blocks and 6 ff blocks with heterogenous 

block sizes.

• Algorithmic baseline:

end-to-end automatic differentiation (AD) 

through equilibrium computation

• Experiment:

pick random (x, y) and compare BP-EP

chaining gradients to AD gradients

→ Near-perfect alignment 

Static gradient analysis



Splitting experiment

• Models :

various EB block sizes with fixed depth (L= 6 or 12)

• Setup:

CIFAR-10 training experiments with our algorithm

and end-to-end AD

• Results:
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Splitting experiment

• Models :

various EB block sizes with fixed depth (L= 6 or 12)

• Setup:

CIFAR-10 training experiments with our algorithm

and end-to-end AD

• Results:

→ For a given depth, performance is maintained across all splits

→ Our algorithm is on par with end-to-end AD on all models

→ For a given depth, simulating ff-EBMs with smaller block sizes results 

     in 4x speed up



Scaling experiment

• Models:

ff-EBM with EB blocks of size 2, with up to 15 layers in total

• Setup:

ImageNet32 and CIFAR100 training experiments with 

our algorithm and end-to-end AD

• Results:
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Scaling experiment

• Models:

ff-EBM with EB blocks of size 2, with up to 15 layers in total

• Setup:

ImageNet32 and CIFAR100 training experiments with 

our algorithm and end-to-end AD

• Results:

→ New EP SOTA on CIFAR100     (~71.2 % top1 val)

→ New EP SOTA on ImageNet32  (~46 % top1 val)

→ Our algorithm still on par with end-to-end AD on all models



Conclusion

• Our work enables the gradual integration of analog (energy-based) parts into existing 

digital accelerators

• Also promising to scale up EP simulations 

to deeper architectures

• Possible extensions of our work:

→ more hardware realistic simulations

→ ff-EBM counterparts of transformers



See you in Vancouver! :) 
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