

SINGAPORE MANAGEMENT

Robust Sleep Staging over Incomplete Multimodal Physiological Signals via Contrastive Imagination

Qi Shen, Junchang Xin, Bingtian Dai, Shudi Zhang, Zhiqiong Wang *

Overall framework

Missing rate: $\rho = 1 - \frac{1}{N \cdot M} \sum_{i=1}^{N} \sum_{j=1}^{M} Z_i^j$ At least one mode is kept in one instance

■ SMCCL									$\mathbf{U} = \{\{u_i^j\}_{i=1}^R\}_{j=1}^R, u_i^j = \begin{cases} 1, & \bar{y}_i^j = \dot{y}_i^j \\ 0, & \bar{u}^j \neq \dot{w}^j \end{cases} \mathbf{V} = \{\{v_i^j\}_{i=1}^R\}_{j=1}^R, v_i^j = \begin{cases} 1, & \bar{s}_i^j = \dot{y}_i^j \\ 0, & \bar{s}_i^j = \dot{y}_i^j \end{cases}$								$\bar{s}_i^j = \dot{s}_i^j$							
Lab	$\int_{1}^{el} \mathbf{Y} = \begin{bmatrix} 0\\1\\2 \end{bmatrix}$	0 0 1 1 2 2				$\mathbf{S} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$	1 2 1 2 1 2	Modality matrix	у								5	(·	$0, y_i \neq 0$	y_i		5	ί	$s_i \neq s_i$
latten	+ Replicate	ŧ					Flatten	+ Replic	ate						w	$I = \mathbf{U} \odot \mathbf{V} +$	$(1-\Theta)(\mathbf{II} - \mathbf{II})$	$\odot \mathbf{V} + 0$	$\Theta(\mathbf{V} - \mathbf{U})$	\mathbf{V}		1 5	M = I($(\phi^k; \phi^i)$
10	0 0 0	0 0	0 0	010	0 0	0 0	0 0	0 0 0	170								1-0/0 0			-	$\theta_k =$	<u> </u>	$1_{i \neq k} \cdot \frac{1}{2}$	(\[\[\[\[\[\[\[\[\[\[\[\[\[\[\[\[\[\[\[
1	1 1 1	1.1	1 1	1 11	0 0	0 0	0 0	0 0 0	x 1							the 1th level	the 2th level		the 3th level			$M-1 \leftarrow$	i=1 H	$(\phi^{\kappa}, \phi^{i})$
2	2 2 2	2 2 2	2 2	211	0 0	0 0	0 0	0 0 0	2 1															280106 ISAWA 192
1	0 0 0	0 0	0 0	0 11	1 1	1 1	1.1	1.1.1	1							0								
$\overline{\mathbf{Y}} = \begin{bmatrix} 1 \end{bmatrix}$	1 1 1	1.1	1 - 1	1 5	= 1 1	I = 1	1.1	1 1 1	1					10	H($(\phi^k)/1$	C.		Icok. di)	H	$(\phi^k) + H(\phi^i)$	$-H(\phi^k \phi^i)$		
2	2 2 2 2	2 2 2	2 2	2 11	11	1 1	1.1	111	1							P //	1		$\frac{I(\varphi,\varphi)}{I(\varphi,\varphi)}$	=	$(\varphi) + \Pi(\varphi)$	(ψ, φ)		
0	0 0 0	0 0 0	0 0	0	2 2	2 2	2 2	2 2 2	2							11 dk . d	i) H(dk	di	$H(\phi^{\kappa},\phi^{i})$		$H(\phi^{\kappa}, \phi)$	$\phi^i)$		
1	1 1 1	111	1 1	1	2 2	2 2	2 2	2 2 2	1							$I(\varphi, \varphi)$) /11(φ ,	φ)	$\int p(x) 1$	n_1	$dx + \int p(y) dx$	$\frac{1}{du} = \int \int$	$n(r u)\ln \frac{1}{d}$	edu
2	2 2 2 2	2 2 2	2 2	2 10	2 2	2 2	2 2	2 2 2	2),							(A))			$= \frac{\int p(x) f(x)}{\int p(x) f(x)}$	$p(x)^{c}$	$ax + \int P(g) dx$	p(y) ag JJ	p(x,y) $p(x,y)$ as	ray
Contra	stive mask calculation	Forma	da (11)	Con	trastive m	ask tion	Form	ila (11)							П	(\$)<					$\iint p(x, y)$	$y)\ln\frac{1}{p(x,y)}dxdy$	y	
E	0 0 1	1 0 0	1 0	0711	[1]	1 0	0 0	0 0 0	in C	6, 0	0,	0, 0,	0, 0	0	0 T				$\int \int p(x)$	$u)\ln$	$\frac{1}{drdu} + \int$	$\int p(r, y) \ln \frac{1}{r}$	$-dxdy = \int \int p(y) dy$	$\frac{1}{2}u$ ln $\frac{1}{drdu}$
	1 0 0	0 1 0	0 1	011	11	1 0	0 0	0 0 0		0, 0	0	0, 0,	0, 0	0	0				$=$ $\frac{JJP(w)}{w}$, g / m j	$p(x)^{\operatorname{dat} \operatorname{deg}} + J.$	$\int p(x, y) m p(y)$) datag JJ P(a	p(x,y) = p(x,y)
- 0	0 1 0	0 0 1	0 0	111	1.1	1 0	0 0	0 0 0		0, 0	θ, 1	0, 0,	0, 0	0	0,						ſ	$\int p(x,y) \ln \frac{1}{n/n}$	-dxdy	
	0 0 1	0 0	1 0	0 11	0 0	0 1	11	0 0 0		θ, θ	0, 1	9, 0,	0, 0.	0,	θ,					233		p(x)	(g) •	
U = (1 0 0	0 1 0	0 1	0 11	= 0 0	0 1	11	0 0 0	Θ =	0, 0	0, 1	9, 0,	0, 0	θ,	0,	Tesk. in	/ D	× 🔺	$\int \int p(x,$	$(,y)\ln_{\overline{p}}$	$\frac{1}{p(x)p(y)}dxdy$ -	$- \int \int p(x,y) \ln \frac{1}{2}$	$\frac{1}{p(x,y)}dxdy$	
0	0 1 0	0 0 1	0 0	1 hr	0 0	0 1	11	0 0 0		0, 0	0, 1	9, 0,	0, 0	0,	θ_{1}	$\frac{I(\phi^{*}; \phi^{*})}{-1} = 1$	og 1 (P		=		ff and an and les	1 dada		
	0 0 1	1 0 0	1 0	0	0 0	0 0	0 0	111		θ, θ	θ, ι	9, Ø,	0, 0	θ,	θ_i	$H(\phi^k, \phi^i)$	$\mathbf{P}_{\mathbf{p}} = \mathbf{P}_{\mathbf{p}} \mathbf{P}_{\mathbf{p}}$				$\int \int p(x,y) m_{\eta}$	$\overline{a(x,y)}axay$		
0	0 1 0 0	0 1 0	0 1	0	0 0	0 0	0 0	1.1.1		0, 0	0, 1	$\theta_1 = \theta_1$	0, 0	0,	θ.	Second and the second second s	X		ffnor	u)ln_	p(x,y) dx dy			
	0 1 0	0 0 1	0 0	1 1	0 0	0 0	0 0	1 1 1	1	0, 0	0, 1	$\theta_{i} = \theta_{i}$	0, 0	0,	0				$=$ $\frac{\int \int P(x)}{\partial x}$,g)m _p	p(x)p(y) ax ay			
				- 450 0.00					-					1.000					$= \int \int p(a)$	$r.y)\ln$	$\frac{1}{dxdy}$			
		1	Similari	y weigh	1	-	-	For	cumla (12										JJ 1 3	101	p(x,y) = 0			
			natrix ca	iculatio	0 0				1.0		3	÷							$-\int \int 1_{100}$		(p(x,y))	dandar		
				a	4 9	1-	α ₁ 0	0 0	1-0	1.0	0	E.							$= \prod \log$	$\frac{1}{p(x,y)}$	$\left(\frac{1}{p(x)p(y)}\right)$	axay		
				01 0	0 1	0	1-1	4 . 0		1-0	1.0	1							55	955030	(P(w)P(g))			
				0	0 0			1-01	1.0	1	1-0	1			Г		- C4-	22003258450	10-880-80-50-5				75	arc - 90
		w-	0-	0 I.	0 0		U.	0.	1-01	1.4	0	12				al a)	-1 5	$B \cdot M$	$\neg B \cdot M$				$\exp(\varphi_i \cdot \varphi)$	p_i/τ
		100	V -	0	0 1-	a a	n	<u> </u>	0	0	1-0	1				$\ell^{(s)} = \overline{\mathbf{w}}$	<u> </u>)	$1_{i\neq}$	$i_j \cdot 1$	$w^j \searrow 0 \cdot w^j_i$	$\cdot \log \underline{-}_{P}$	M	<u>J1 /</u>
		0	1	-0.	0 0	1-	0 0	0	1	0.	A	1				N_{m^j}	$>_0 - 1 \checkmark$	i=1 4	-j=1	9	wi >0 i	$\sum_{i=1}^{B}$	$1_{i \neq k} \cdot ext$	$(\varphi_i \cdot \varphi_k / \tau)$
				0 1	-0. 0	0	1-1	2 0	0.	1	0	1				w_i						$\Delta k =$	1 - +++	(11 10/.)
				0	0 1-	0. 0	0	1-0	0	0	5	1												
		W.		Call Incard	The stand	1	And the second second	1	S. State		and the second													

MCTA

 $(N*L, C, D) \rightarrow (N, L, C*D/S)$

Quantitative results

Table 1: Performance comparison for complete and incomplete modalities in randomly partially missing case. Here "incomplete" means the maximum missing rate.

Datasets	Methods		Complete	2	Incomplete			
Dunieto		Acc	MF1	K	Acc	MF1	K	
	FeatConcat	0.825	0.761	0.771	0.497	0.429	0.285	
	MultitaskCNN [8]	0.835	0.753	0.775	0.589	0.506	0.449	
	SalientSleepNet [23]	0.872	0.827	0.827	0.634	0.565	0.485	
Sleep-EDF-20	MM-Net [1]	0.867	0.817	0.822	0.570	0.493	0.432	
8	TransSleep [16]	0.864	0.819	0.821	0.594	0.521	0.457	
	XSleepNet [10]	0.864	0.809	0.819	0.623	0.560	0.478	
	CIMSleepNet	0.867	0.821	0.824	0.853	0.801	0.805	
	FeatConcat	0.788	0.726	0.717	0.526	0.471	0.392	
	MultitaskCNN [8]	0.795	0.727	0.722	0.613	0.535	0.453	
	SalientSleepNet [23]	0.843	0.794	0.791	0.722	0.643	0.625	
Sleep-EDF-78	MM-Net [11]	0.845	0.796	0.794	0.706	0.628	0.597	
22	TransSleep [16]	0.846	0.797	0.795	0.738	0.654	0.637	
	XSleepNet [10]	0.838	0.776	0.779	0.697	0.622	0.583	
	CIMSleepNet	0.849	0.799	0.797	0.830	0.772	0.775	
	FeatConcat	0.745	0.731	0.672	0.502	0.445	0.336	
	MultitaskCNN [8]	0.774	0.763	0.705	0.643	0.630	0.533	
SVUH-UCD	TransSleep [16]	0.794	0.782	0.732	0.725	0.698	0.636	
	XSleepNet [10]	0.783	0.761	0.725	0.708	0.689	0.615	
	CIMSleepNet	0.801	0.794	0.751	0.788	0.777	0.726	
	FeatConcat	0.700	0.464	0.237	0.477	0.243	0.011	
MUD	MLP [24]	0.723	0.529	0.306	0.610	0.348	0.035	
MHK	DeepCNN [9]	0.759	0.615	0.421	0.616	0.354	0.039	
	CIMSleepNet	0.729	0.553	0.348	0.701	0.466	0.240	

Table 2: Performance comparison in completely missing case.

Test Modalities	Methods	Acc	MF1	K
EEG	CoRe-Sleep [26]	0.882	0.808	0.834
	CIMSleepNet	0.891	0.817	0.845
EOG	CoRe-Sleep [26] CIMSleepNet	0.853	0.753 0.760	0.792 0.798
EEG+EOG	CoRe-Sleep [26]	0.895	0.823	0.853
	CIMSleepNet	0.903	0.828	0.862

3 Experiment

Quantitative results

- As the missing rate increases, the performance of other methods begins to decline significantly.
- CIMSleepNet exhibits amore stable trend.

Qualitative results

Ablation studies

MAIM	SMCCL	MCTA	Acc	MF1	K	Model Size (MB)	GFLOPs
			0.497	0.429	0.285	2.344	0.069
\checkmark			0.771	0.704	0.672	5.767	0.096
	\checkmark		0.786	0.726	0.699	8.458	0.071
		1	0.694	0.629	0.536	30.272	2.206
\checkmark	~		0.810	0.756	0.759	4.412	0.097
\checkmark		1	0.829	0.778	0.777	33.696	2.876
	\checkmark	1	0.834	0.786	0.784	36.386	2.246
\checkmark	~	1	0.853	0.801	0.805	37.678	2.902

Table 3: Ablation study of CIMSleepNet on Sleep-EDF-20. " \checkmark " indicates the use of this component. MCTA indicates the Transformer equipped with MCTA. The context length of single inference is 25.

Table 4: Ablation study of Transformer equipped with MCTA on Sleep-EDF-20.

Methods	Acc	MF1	K
Intra-GRU	0.827	0.775	0.772
Inter-GRU	0.835	0.780	0.787
Intra & Inter-GRU	0.839	0.788	0.791
Intra-Transformer	0.813	0.770	0.765
Inter-Transformer	0.837	0.789	0.793
Intra & Inter-Transformer	0.845	0.795	0.797
Transformer with MCTA	0.853	0.801	0.805

Other analysis

- We try to challenge multimodal ASS under incomplete modalities by proposing CIMSleepNet.
- MAIM reconstructs missing modality data by establishing interactions among modalities, which allows for the provision of complete modality data support for subsequent components.
- SMCCL ingeniously leverages semantic information and modal information to subdivide similarity into three levels, thereby simulating real data distribution.
- MCTA mechanism accomplishes comprehensive temporal context modeling, further improving the expressive ability of latent temporal representations.

Thank You For Your Attention!