

OnlineTAS: An Online Baseline for Temporal Action Segmentation

Qing Zhong^{1,2,*}, Guodong Ding^{2,*}, Angela Yao²

¹University of Adelaide, ²National University of Singapore,

*Equal Contribution.

Temporal Action Segmentation

Offline

• Complete video used in inference

Temporal Action Segmentation

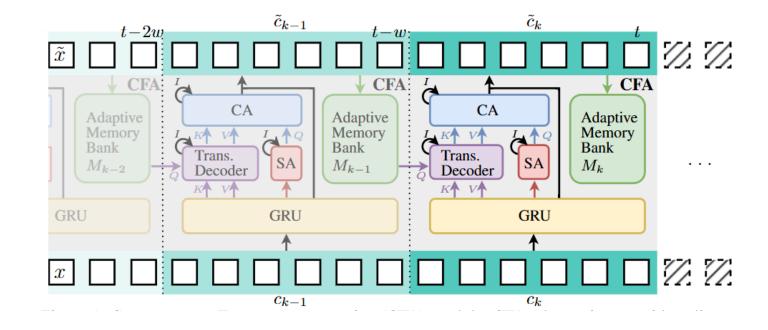
Offline

• Complete video used in inference

Online

• Clip or single frame used in inference.

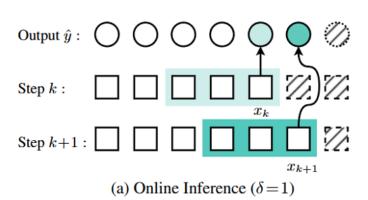
Adaptive Memory Bank


- Fixed size memory length w
- Long-term size increasing, but not exceeding 2/3 w.
- Short-term size decreasing.

Algorithm 1 Adaptive Memory Update

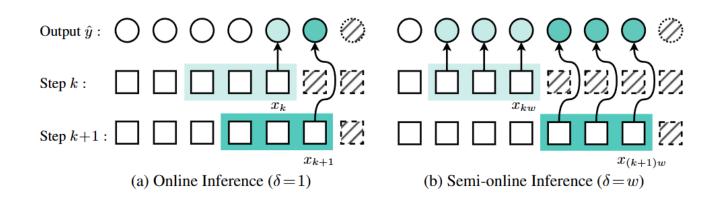
```
Require: \{c_k\}_{k=1}^K, w
  1: Initialize M_0^{\text{short}} \leftarrow c_1, M_0^{\text{long}} \leftarrow \emptyset
 2: for k \in [1...K] do
 3: \tilde{c}_k = \text{CFA}(c_k, M_{k-1})
  4: m_k = \text{Conv1D}(\tilde{c}_k)
            if \operatorname{len}(M_{k-1}^{\operatorname{long}}) \leq \frac{2}{3}w then
                    M_{\nu}^{\text{long}} = \text{concat}(M_{\nu-1}^{\text{long}}, m_k)
              else
                    M_k^{\text{long}} = \text{concat}(M_{k-1}^{\text{long}}[1:], m_k)
              end if
             M_k^{\text{short}} = \tilde{c}_{k-1}[\text{len}(M_k^{\text{long}}):]
10:
            M_k = [M_k^{\text{long}}, M_k^{\text{short}}]
12: end for
```

Context-aware Feature Augmentation (CFA)


- Capture video information.
- Achieve a more effective memory.
- Information exchange with local clip window
- Combine features.

Inference

Two inference mode


• Online inference

Inference

Two inference mode

- Online inference
- Semi-online inference

Post-processing

- Selecting valid action segment
- Mitigating the over-segmentation

Algorithm 2 Post-processing for Online TAS

```
1: Compute \ell_{\min} = \sigma \times T_{\max}
2: Initialize \ell = 0
3: for each frame t do
4: if q_t < \theta and \ell < \ell_{\min} then
5: \hat{y}_t^* = \hat{y}_{t-1}^*
6: \ell = \ell + 1
7: else
8: \hat{y}_t^* = \hat{y}_t
9: \ell = 0
10: end if
11: end for
```

Ablation study of module components

- The GRU and Mem. has ability to accumulate context information
- The CFA module enhanced clipwise features with GRU and Mem. improves performance

GRU	CFA	Mem.	Acc	Edit	F1 @ {10, 25, 5		25, 50}
-	-	_	75.2	19.6	26.8	24.4	19.6
\checkmark	-	-	78.1	27.1	37.9	34.7	26.7
-	\checkmark	-	76.2	22.3	30.1	27.0	21.9
\checkmark	\checkmark	-	79.1	29.0	38.5	35.5	28.3
-	\checkmark	\checkmark	78.9	29.2	38.7	35.1	28.8
✓	✓	✓	82.4	32.8	43.0	41.1	34.7

Ablation study of memory composition

- Each type of memory contributes to performances improvements
- Both long and short memory information are equally important.

Mshort	M^{long}	Acc	Seg.
√	-	80.3	36.7
-	\checkmark	80.4	36.4
✓	\checkmark	82.4	37.9

Comparison with SOTA methods on three benchmarks

		GTEA [12]				50Salads [38]					
	Method		Edit	F1 @	{10, 2	25, 50}	Acc	Edit	F1 @	{10, 2	25, 50}
offline	MS-TCN [11]	78.7	84.0	88.3	86.6	72.8	81.2	65.8	72.8	70.4	61.7
	MS- $TCN + p.p.$	78.7	85.2	89.6	88.3	73.3	80.4	74.1	82.0	79.2	70.2
	ASFormer [45]	79.7	84.6	90.1	88.8	79.2	85.6	79.6	85.1	83.4	76.0
	DiffAct [25]	82.2	89.6	92.5	91.5	84.7	87.4	88.9	90.1	89.2	83.7
	LSTR [44]	63.7	33.2	41.5	37.7	25.0	60.5	5.0	8.2	6.6	4.1
online	Causal TCN	74.4	66.6	73.9	70.3	57.2	75.2	19.6	26.8	24.4	19.6
	Oursonline	75.8	66.8	74.3	71.5	60.3	79.1	29.0	38.5	35.5	28.3
	Ours ^{online} + p.p.	73.5	75.4	80.3	76.9	66.6	76.7	69.2	73.1	70.5	62.8
	Ours ^{semi}	77.1	68.1	76.7	73.5	63.9	82.4	32.8	43.0	41.1	34.7
	Ours ^{semi} + p.p.	76.0	79.7	84.9	81.4	69.2	79.4	75.0	82.5	80.2	68.0

		Breakfast [18]						
	Method	Acc	Edit	F1 @	{10, 2	25, 50}		
ē	MS-TCN [II]	69.3	67.3	64.7	59.6	47.5		
offline	ASFormer [45]	73.5	75.0	76.0	70.6	57.4		
	DiffAct [25]	75.1	76.4	80.3	75.9	75.1		
online	MV-TAS [13]	41.6	2	820	121	4		
	LSTR [44]	24.2	4.9	5.5	3.9	1.7		
	Causal TCN	55.3	18.7	15.1	11.7	8.3		
	Oursonline	56.7	19.3	16.8	13.9	9.3		
	Ours ^{online} + p.p.	52.9	55.7	54.8	45.8	30.5		
	Ourssemi	57.4	19.6	17.8	14.8	10.1		
	Ours ^{semi} + p.p.	53.8	57.5	56.4	47.3	31.4		

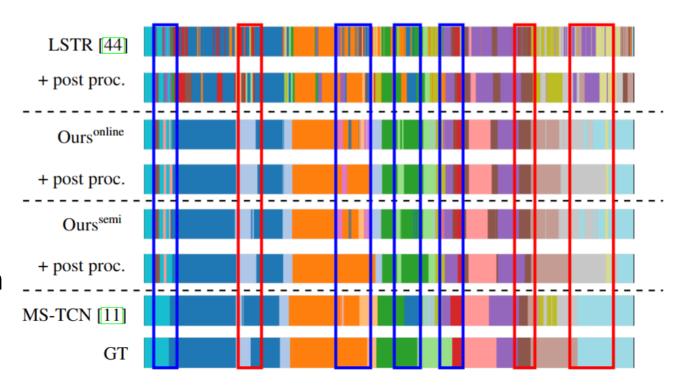

Table 8: Comparison with the state-of-the-art methods on GTEA and 50Salads.

Table 9: Comparison with the state-of-the-art methods on Breakfast.

Our method: SOTA in online setting, and comparable with offline setting.

Visualization

- Semi-online inference producing smoother predictions.
- Removes short fragments (blue boxes).
- Reduce accuracy near action boundaries (red boxes).

Take aways

Temporal Interaction

 Interaction between the current video clip features and the past memory bank is essential for achieving good performance.

Inference mode

• Semi-online inference, which retains dense predictions generated from all frames as the final output, yields better performance.

Post-processing Assist

Post-processing is effective in addressing over-segmentation.

Thank you