

Jiequan Cui¹, Zhuotao Tian², Zhisheng Zhong³, Xiaojuan Qi⁴, Bei Yu³, Hanwang Zhang¹ NTU¹ HIT(SZ)² CUHK³ HKU⁴

Kullback-Leibler (KL) Divergence Loss

Decoupled Kullback-Leibler (DKL) Divergence Loss

Experimental Results

□ Kullback-Leibler (KL) Divergence Loss

D Definition

Assume $x_m, x_n \in X$, the KL loss encourages outputs consistency:

$$\mathcal{L}_{KL}(x_m, x_n) = \sum_{j=1}^C s_m^j \log \frac{s_m^j}{s_n^j}$$

where o_m , o_n are logit outputs, s_m , s_n are *softmax* scores.

□ Kullback-Leibler (KL) Divergence Loss

□ Kullback-Leibler (KL) Divergence Loss

Gradient Optimization

$$\frac{\partial \mathcal{L}_{KL}}{\partial o_m} = \sum_{k=1}^{C} ((\Delta m_{j,k} - \Delta n_{j,k}) * (s_m^k s_m^j))$$
$$\frac{\partial \mathcal{L}_{KL}}{\partial o_n} = s_m^j * (s_n^j - 1) + s_n^j * (1 - s_m^j)$$
where $\Delta m_{j,k} = o_m^j - o_m^k$ and $\Delta n_{j,k} = o_n^j - o_n^k$

Decoupled Kullback-Leibler (DKL) Divergence Loss

Theorem 1. From the perspective of gradient optimization, the KL Divergence loss is equivalent to the following DKL Divergence loss when $\alpha = 1$ and $\beta = 1$.

$$\mathcal{L}_{DKL}(x_m, x_n) = \frac{\alpha}{4} \frac{||\sqrt{S(w_m)}(\Delta_m - S(\Delta_n))||^2}{|\mathbf{w}|\mathbf{s}|\mathbf{k}|} - \frac{\beta \cdot S(s_m^T) \log s_n}{|\mathbf{C}\mathsf{ross-Entropy}|}$$

where S(·) means stop gradients operation, \mathbf{s}_m^T is the transpose of s_m , $\Delta m_{j,k} = o_m^j - o_m^k$ and $\Delta n_{j,k} = o_n^j - o_n^k$, summation is used for reduction of $||\cdot||^2$.

EURAL INFORM

- Decoupled Kullback-Leibler (DKL) Divergence Loss
 Significance of DKL Loss
 - □ Theorem 1. precisely reveals the relationships between KL, MSE, and Cross-Entropy losses
 - \square The gradients regrading o_m and o_n are asymmetric
 - □ The component of **wMSE** depends on sample-wise prediction scores which might suffer from biases.

$$\mathcal{L}_{DKL}(x_m, x_n) = \frac{\alpha}{4} ||\sqrt{S(w_m)}(\Delta_m - S(\Delta_n))||^2 - \beta \cdot S(s_m^T) \log s_n$$

weighted MSE (wMSE) Cross-Entropy

Decoupled Kullback-Leibler (DKL) Divergence Loss

□ Improvements of DKL Loss

NYANG

SINGAPORE

D Experimental Results

□ Adversarial Training

New state-of-the-art on Auto-Attack benchmark

Table 2: Test accuracy (%) of clean images and robustness (%) under AutoAttack on CIFAR-100.	
All results are the average over three trials.	

Dataset	Method	Architecture	Augmentation Type	Clean	AA
	AWP	WRN-34-10	Basic	60.38	28.86
	LBGAT	WRN-34-10	Basic	60.64	29.33
	LAS-AT	WRN-34-10	Basic	64.89	30.77
	ACAT	WRN-34-10	Basic	65.75	30.23
CIFAR-100	IKL-AT	WRN-34-10	Basic	65.76	31.91
$(\ell_{\infty}, \epsilon = 8/255)$	ACAT	WRN-34-10	AutoAug	68.74	31.30
	IKL-AT	WRN-34-10	AutoAug	66.08	32.53
	DM-AT [39]	WRN-28-10	50M Generated Data	72.58	38.83
	IKL-AT	WRN-28-10	50M Generated Data	73.85	39.18

D Experimental Results

□ Knowledge Distillation

Competitive performance on knowledge distillation

Table 4: Top-1 accuracy (%) on the ImageNet validation and training speed (sec/iteration)
comparisons. Training speed is calculated on 4 Nvidia GeForce 3090 GPUs with a batch of 512
224x224 images. All results are the average over three trials.

Teacher	D	ResNet34 73.31 ResNet18 69.75		ResNet50 76.16 MobileNet 68.87	
Student	Extra Parameters				
AT	×	70.69		69.56	
OFD	✓	70.81		71.25	
CRD	✓	71.17		71.37	
ReviewKD	~	71.61	0.319 s/iter	72.56	0.526 s/iter
DKD	×	71.70		72.05	
KD	×	71.03		70.50	
IKL-KD	×	71.91	0.197 s/iter	72.84	0.252 s/iter
	Student AT OFD CRD ReviewKD DKD KD	Extra ParametersStudentXATXOFD✓CRD✓ReviewKD✓DKDXKDX	TeacherExtra ParametersRStudentX70.69OFD✓70.81CRD✓71.17ReviewKD✓71.61DKDX71.70KDX71.03	Teacher 73.31 Student Extra Parameters ResNet18 69.75 69.75 AT X 70.69 OFD ✓ 70.81 CRD ✓ 71.17 ReviewKD ✓ 71.61 0.319 s/iter DKD X 71.03 ✓	Teacher 73.31 73.31 Student Extra Parameters ResNet18 M AT X 70.69 69.56 OFD ✓ 70.81 71.25 CRD ✓ 71.17 71.37 ReviewKD ✓ 71.61 0.319 s/iter 72.05 DKD X 71.03 70.50

Method	Teacher	Student	Many(%)	Medium(%)	Few(%)	All(%)
Baseline	-	ResNet-18	63.16	33.47	5.88	41.15
Baseline	-	ResNet-50	67.25	38.56	8.21	45.47
Baseline	-	ResNet-101	68.91	42.32	11.24	48.33
KL-KD	ResNeXt-101	ResNet-18	64.6	37.88	9.53	44.32
VI VD	DecNeVt 101	DecNet 50	69 92	42.21	11 27	49.21

Table 5: Peformance (%) on imbalanced data, i.e., the ImageNet-LT.

KL-KD	ResNeXt-101	ResNet-50	68.83	42.31	11.37	48.31
IKL-KD	ResNeXt-101	ResNet-18	66.60	38.53	8.19	45.21
IKL-KD	ResNeXt-101	ResNet-50	70.06	43.47	10.99	49.29

Thank You!

