

Jiequan Cui¹, Zhuotao Tian², Zhisheng Zhong³, Xiaojuan Qi⁴, Bei Yu³, Hanwang Zhang¹ NTU¹ HIT(SZ)² CUHK³ HKU⁴

Kullback-Leibler (KL) Divergence Loss

Decoupled Kullback-Leibler (DKL) Divergence Loss

Experimental Results

■ Kullback-Leibler (KL) Divergence Loss

D Definition

Assume x_m , $x_n \in X$, the KL loss encourages outputs consistency:

$$
\mathcal{L}_{KL}(x_m, x_n) = \sum_{j=1}^{C} s_m^j \log \frac{s_m^j}{s_n^j}
$$

where o_m , o_n are logit outputs, s_m , s_n are *softmax* scores.

■ Kullback-Leibler (KL) Divergence Loss

■ Kullback-Leibler (KL) Divergence Loss

 \Box Gradient Optimization

$$
\frac{\partial \mathcal{L}_{KL}}{\partial o_m} = \sum_{k=1}^{C} ((\Delta m_{j,k} - \Delta n_{j,k}) * (s_m^k s_m^j))
$$

$$
\frac{\partial \mathcal{L}_{KL}}{\partial o_n} = s_m^j * (s_n^j - 1) + s_n^j * (1 - s_m^j)
$$

where $\Delta m_{j,k} = o_m^j - o_m^k$ and $\Delta n_{j,k} = o_n^j - o_n^k$

□ Decoupled Kullback-Leibler (DKL) Divergence Loss

Theorem 1. From the perspective of gradient optimization, the KL Divergence loss is equivalent to the following DKL Divergence loss when $\alpha = 1$ and $\beta = 1$.

$$
\mathcal{L}_{DKL}(x_m, x_n) = \frac{\alpha}{4} \frac{||\sqrt{S(w_m)}(\Delta_m - S(\Delta_n))||^2 - \beta \cdot S(s_m^T) \log s_n}{\text{weighted MSE (wMSE)}}
$$

weighted MSE (wMSE) Cross-Entropy
where S(·) means stop gradients operation, s_m^T is the transpose of s_m, $\Delta m_{j,k} = o_m^j - o_m^k$
 o_m^k and $\Delta n_{j,k} = o_n^j - o_n^k$, summation is used for reduction of $|| \cdot ||^2$.

AI INFORN

□ Decoupled Kullback-Leibler (DKL) Divergence Loss

■ Significance of DKL Loss

- Theorem 1. precisely reveals the relationships between KL, MSE, and Cross-Entropy losses
- \Box The gradients regrading o_m and o_n are asymmetric
- \Box The component of **wMSE** depends on sample-wise prediction scores which might suffer from biases.

$$
\mathcal{L}_{DKL}(x_m, x_n) = \frac{\alpha}{4} \left| |\sqrt{S(w_m)}(\Delta_m - S(\Delta_n))| |^2 - \beta \cdot S(s_m^T) \log s_n \right|
$$

weighted MSE (wMSE) Cross-Entropy

Decoupled Kullback-Leibler (DKL) Divergence Loss

Improvements of DKL Loss

NYANG

SINGAPORE

Experimental Results

Adversarial Training

New state-of-the-art on Auto-Attack benchmark

Experimental Results

■ Knowledge Distillation

Competitive performance on knowledge distillation

Table 5: Peformance (%) on imbalanced data, *i.e.*, the ImageNet-LT.

Thank You!

