

Renlang Huang, Yufan Tang, Jiming Chen, and Liang Li*

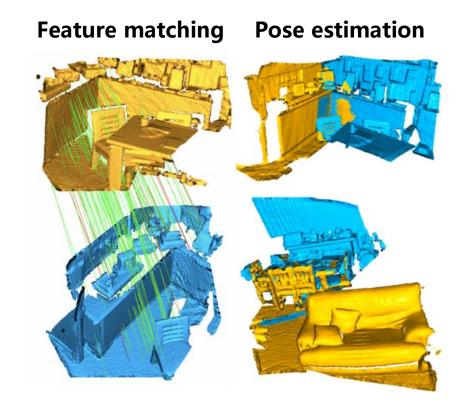
The State Key Laboratory of Industrial Control Technology.

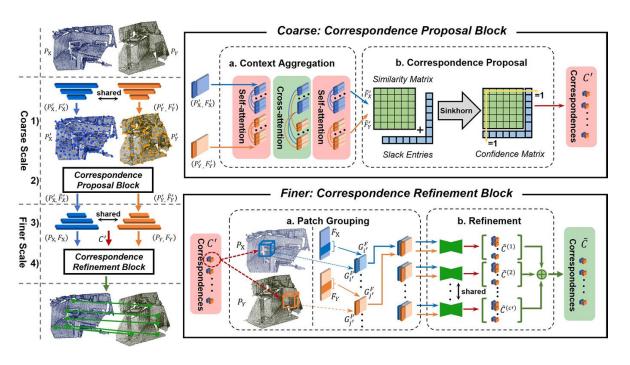
College of Control Science and Engineering, Zhejiang University, Hangzhou, China.

Code Release: http://github.com/RenlangHuang/CAST

> Point cloud registration aims at finding an optimal rigid transformation between two partially overlapped point clouds.

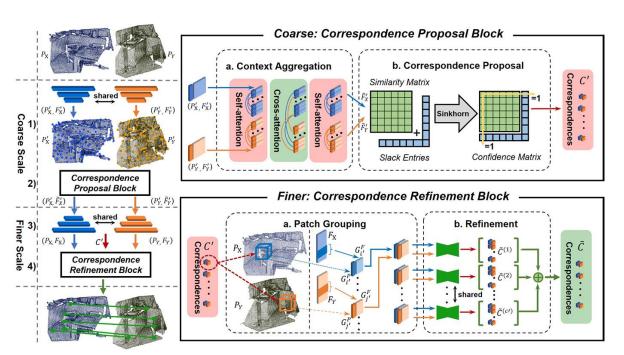
➤ Coarse-to-fine matching has showcased great superiority in 2D-2D, 3D-3D, and even 2D-3D feature matching.



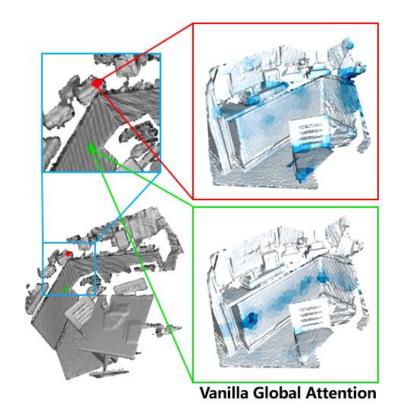


Hao Yu, et al. CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration, NeurIPS 2021.

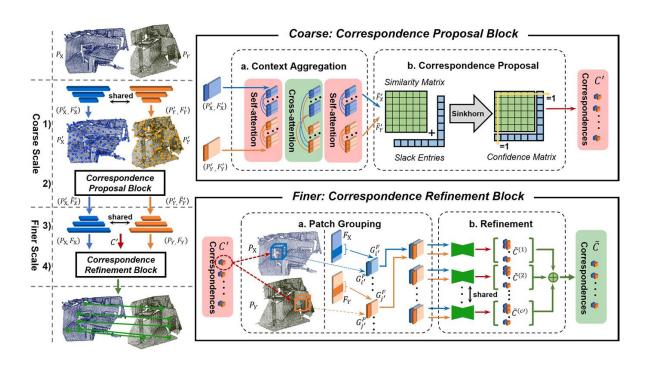
> Coarse-to-fine matching has showcased great superiority in 2D-2D, 3D-3D, and even 2D-3D feature matching.



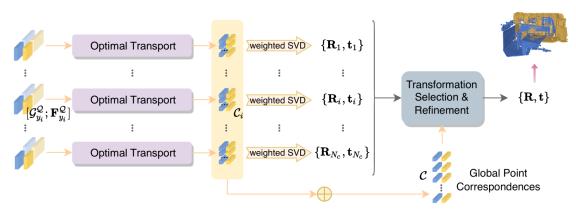
> Coarse matching is sparse and loose without consideration of geometric consistency.



➤ Coarse-to-fine matching has showcased great superiority in 2D-2D, 3D-3D, and even 2D-3D feature matching.

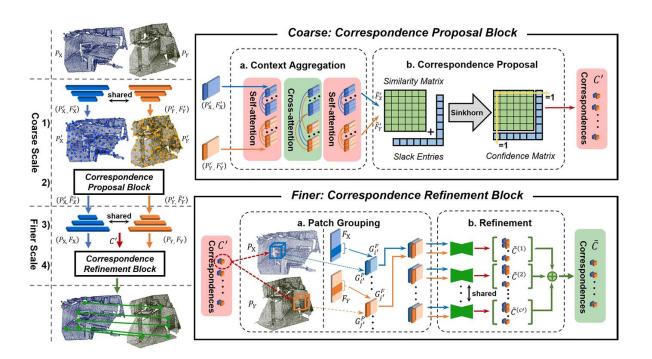


- > Coarse matching is sparse and loose without consideration of geometric consistency.
- Fine matching relies on ineffective optimal transport and hypothesis-and selection methods (RANSAC, etc) for consistent pose estimation.



Optimal transport + hypothesis-and-selection pipeline

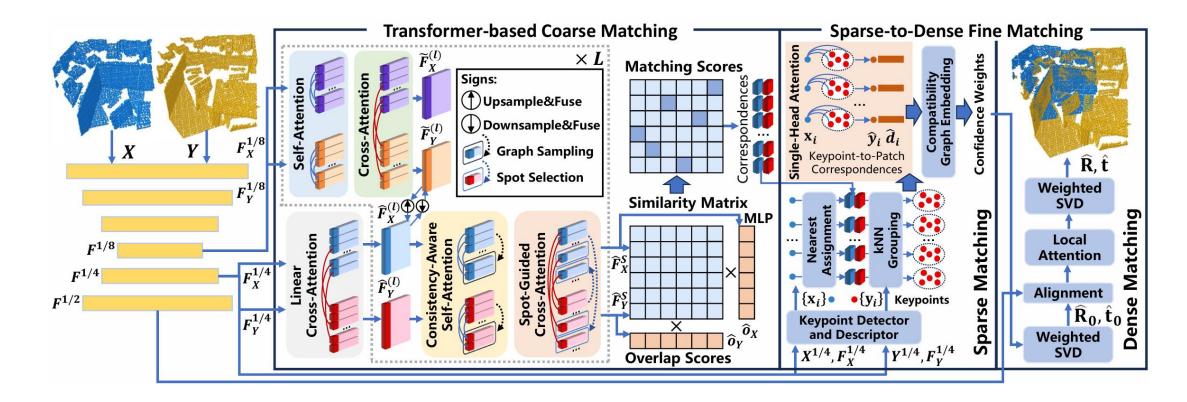
➤ Coarse-to-fine matching has showcased great superiority in 2D-2D, 3D-3D, and even 2D-3D feature matching.



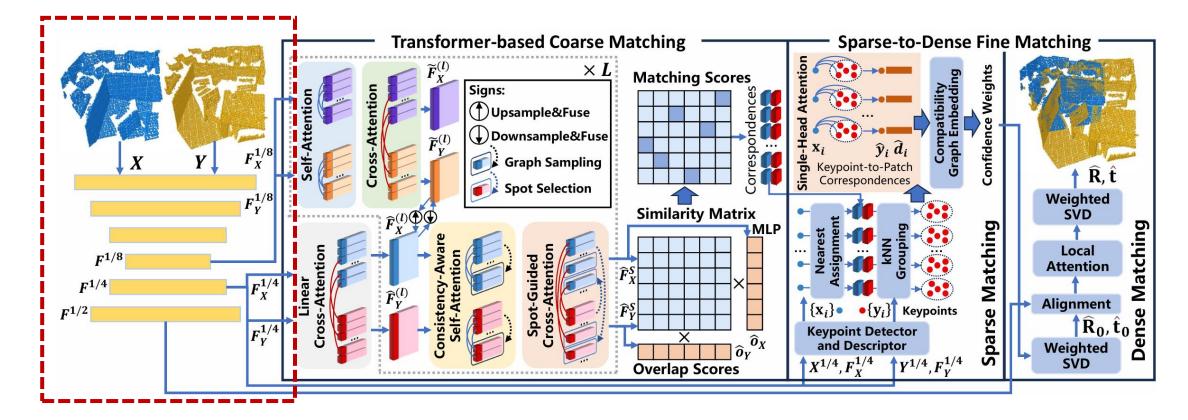
- > Coarse matching is sparse and loose without consideration of geometric consistency.
- Fine matching relies on ineffective optimal transport and hypothesis-and selection methods (RANSAC, etc) for consistent pose estimation.
- > Therefore, existing methods are neither efficient nor scalable for real-time large-scale applications such as odometry in robotics.

LiDAR odometry and mapping

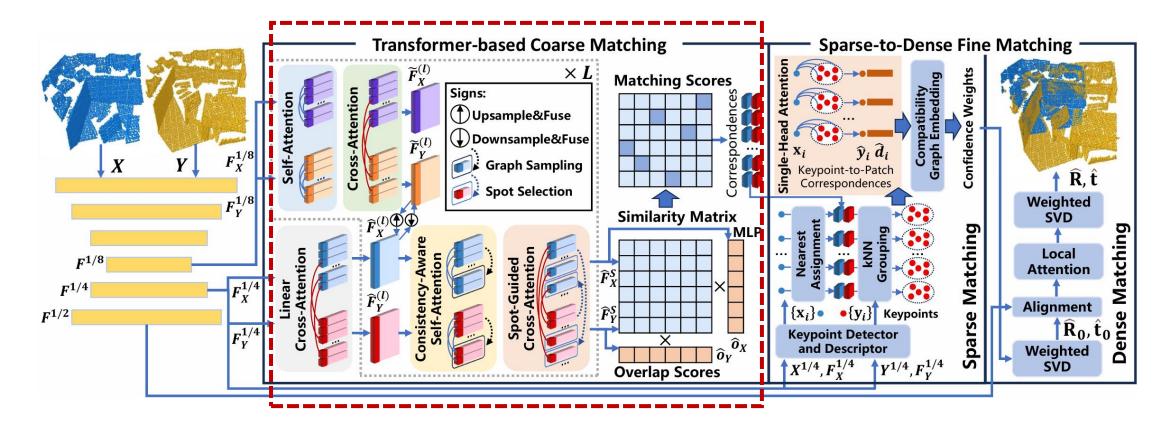
- > A novel **consistency-aware spot-guided Transformer (CAST)** with multi-scale feature fusion for much tighter coarse matching with a focus on geometric consistency.
- > A lightweight and scalable **sparse-to-dense fine matching** module using both sparse keypoints and dense features for accurate registration without optimal transport and hypothesis-and-selection pipelines.



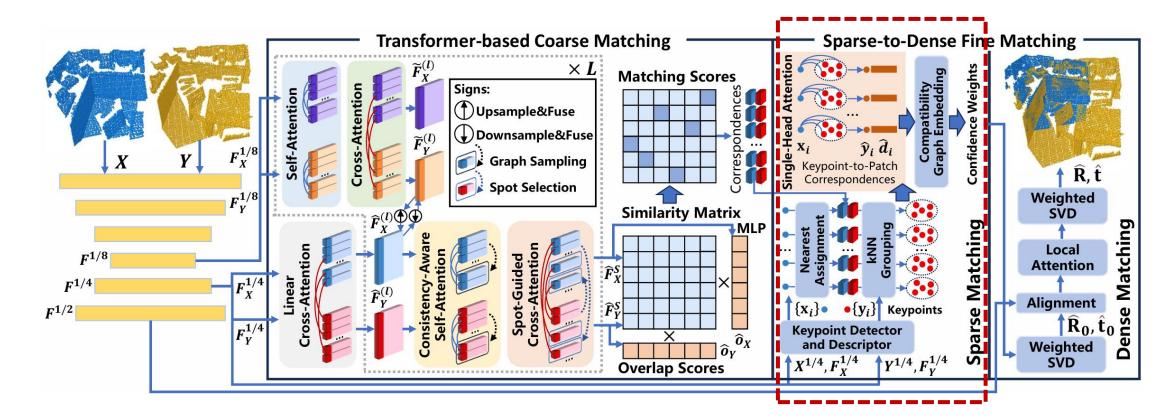
- A novel **consistency-aware spot-guided Transformer (CAST)** with multi-scale feature fusion for much tighter coarse matching with a focus on geometric consistency.
- > A lightweight and scalable **sparse-to-dense fine matching** module using both sparse keypoints and dense features for accurate registration without optimal transport and hypothesis-and-selection pipelines.



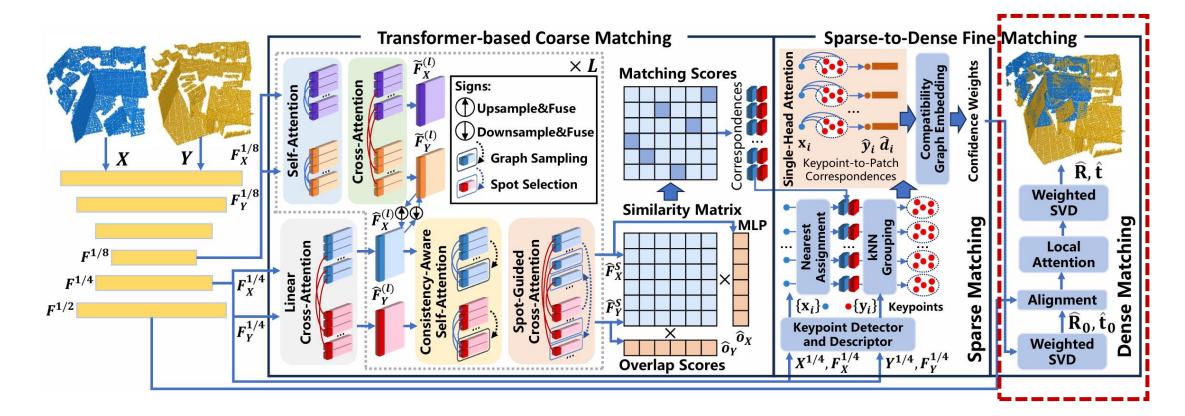
- > A novel **consistency-aware self-attention** module base on sparse sampling from the compatibility graph to enhance global consistency during feature aggregation.
- A novel **spot-guided cross-attention** module with a consistency-aware matching confidence criterion that can maintain local consistency without interfering with irrelevant areas.

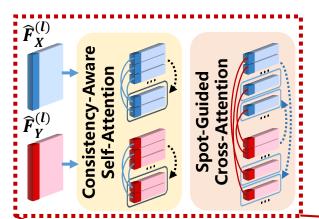


- A novel **consistency-aware spot-guided Transformer (CAST)** with multi-scale feature fusion for much tighter coarse matching with a focus on geometric consistency.
- > A lightweight and scalable **sparse-to-dense fine matching** module using both sparse keypoints and dense features for accurate registration without optimal transport and hypothesis-and-selection pipelines.



- A novel **consistency-aware spot-guided Transformer (CAST)** with multi-scale feature fusion for much tighter coarse matching with a focus on geometric consistency.
- > A lightweight and scalable **sparse-to-dense fine matching** module using both sparse keypoints and dense features for accurate registration without optimal transport and hypothesis-and-selection pipelines.





Dual softmax-based matching scores:

$$\mathbf{P}_{ij}^{(l)} = \underset{k \in \{1, \cdots, M'\}}{\operatorname{softmax}} (\mathbf{S}_{kj}^{(l)})_i \underset{k \in \{1, \cdots, N'\}}{\operatorname{softmax}} (\mathbf{S}_{ik}^{(l)})_j, \ \mathbf{S}^{(l)} = \hat{\mathbf{F}}_X^{(l)} (\hat{\mathbf{F}}_Y^{(l)})^{\mathsf{T}}.$$

Estimated node correspondence set:

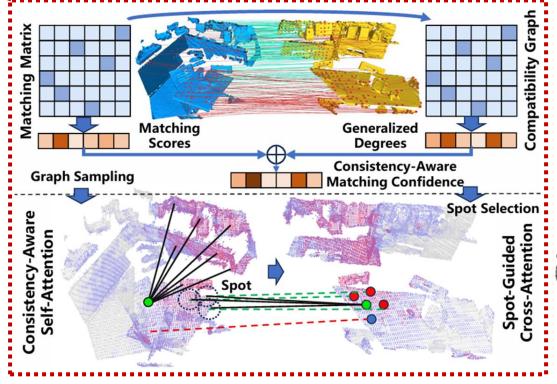
$$\mathcal{C}^{(l)} = \{(\mathbf{x}_i^S, \mathbf{y}_i^S) : \mathbf{x}_i^S \in \mathbf{X}^{1/4}, \mathbf{y}_i^S \in \mathbf{Y}^{1/4}\}.$$

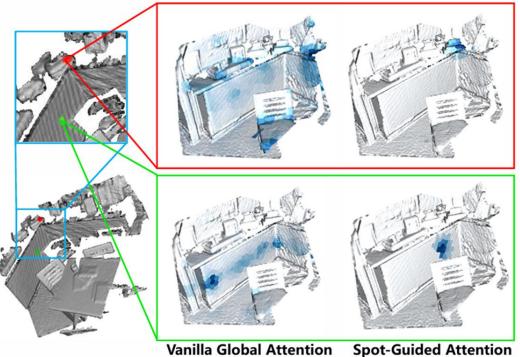
Geometric compatibility graph:

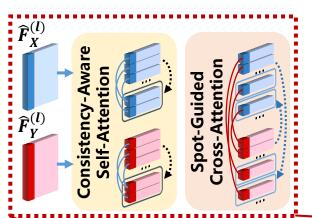
$$\beta_{ij} = \left[1 - d_{ij}^2 / \sigma_c^2\right]^+, d_{ij} = \left| \|\mathbf{x}_i^S - \mathbf{x}_j^S\|_2 - \|\mathbf{y}_i^S - \mathbf{y}_j^S\|_2 \right|.$$

Spot selection for cross-attention:

$$\mathcal{S}(\mathbf{x}_i^S) = igcup_{\mathbf{x}_k^S \in \mathcal{N}_s(\mathbf{x}_i^S)} \mathcal{N}(\mathbf{y}_k^S)$$





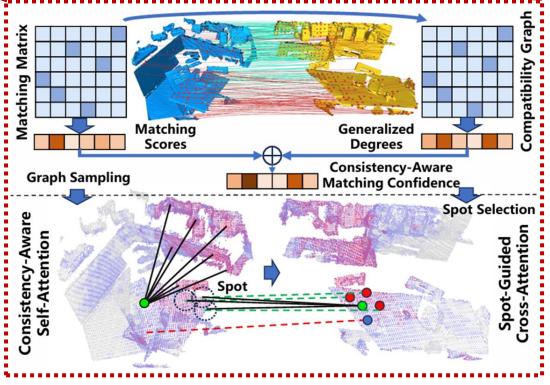


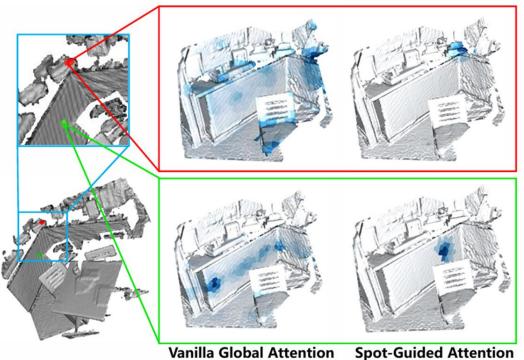
 $\text{Dual softmax-based matching scores:} \quad \mathbf{P}_{ij}^{(l)} = \underset{k \in \{1, \cdots, M'\}}{\operatorname{softmax}} (\mathbf{S}_{kj}^{(l)})_i \underset{k \in \{1, \cdots, N'\}}{\operatorname{softmax}} (\mathbf{S}_{ik}^{(l)})_j, \; \mathbf{S}^{(l)} = \hat{\mathbf{F}}_X^{(l)} (\hat{\mathbf{F}}_Y^{(l)})^\mathsf{T}.$

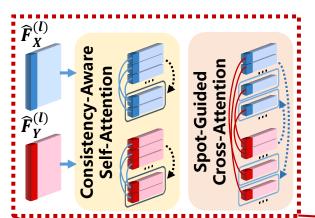
Estimated node correspondence set: $C^{(l)} = \{(\mathbf{x}_i^S, \mathbf{y}_i^S) : \mathbf{x}_i^S \in \mathbf{X}^{1/4}, \mathbf{y}_i^S \in \mathbf{Y}^{1/4}\}.$

Geometric compatibility graph: $\beta_{ij} = \left[1 - d_{ij}^2/\sigma_c^2\right]^+, d_{ij} = \left|\|\mathbf{x}_i^S - \mathbf{x}_j^S\|_2 - \|\mathbf{y}_i^S - \mathbf{y}_j^S\|_2\right|.$

Spot selection for cross-attention: $\mathcal{S}(\mathbf{x}_i^S) = \bigcup_{\mathbf{x}_k^S \in \mathcal{N}_s(\mathbf{x}_i^S)} \mathcal{N}(\mathbf{y}_k^S)$





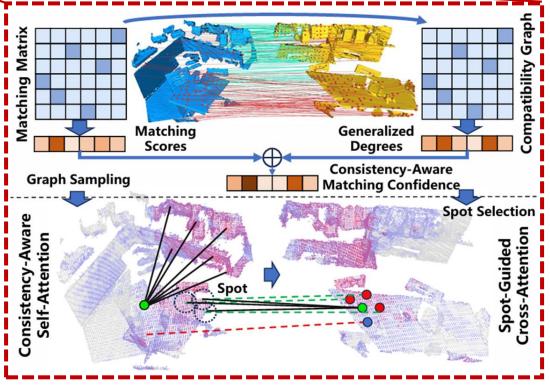


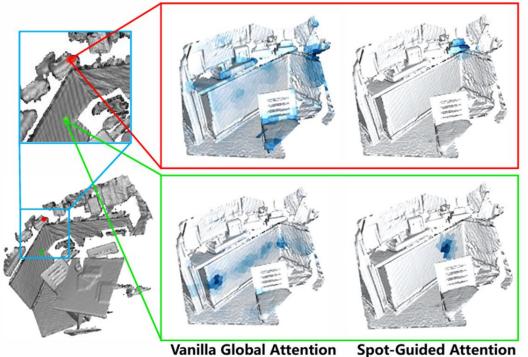
Dual softmax-based matching scores: $\mathbf{P}_{ij}^{(l)} = \underset{k \in \{1, \cdots, M'\}}{\operatorname{softmax}} (\mathbf{S}_{kj}^{(l)})_i \underset{k \in \{1, \cdots, N'\}}{\operatorname{softmax}} (\mathbf{S}_{ik}^{(l)})_j, \ \mathbf{S}^{(l)} = \hat{\mathbf{F}}_X^{(l)} (\hat{\mathbf{F}}_Y^{(l)})^\mathsf{T}.$

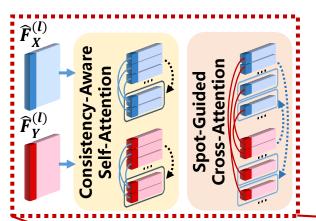
Estimated node correspondence set: $\mathcal{C}^{(l)} = \{(\mathbf{x}_i^S, \mathbf{y}_i^S) : \mathbf{x}_i^S \in \mathbf{X}^{1/4}, \mathbf{y}_i^S \in \mathbf{Y}^{1/4}\}.$

Geometric compatibility graph: $\beta_{ij} = \left[1 - d_{ij}^2/\sigma_c^2\right]^+, d_{ij} = \left|\|\mathbf{x}_i^S - \mathbf{x}_j^S\|_2 - \|\mathbf{y}_i^S - \mathbf{y}_j^S\|_2\right|.$

Spot selection for cross-attention: $\mathcal{S}(\mathbf{x}_i^S) = \bigcup_{\mathbf{x}_k^S \in \mathcal{N}_s(\mathbf{x}_i^S)} \mathcal{N}(\mathbf{y}_k^S)$





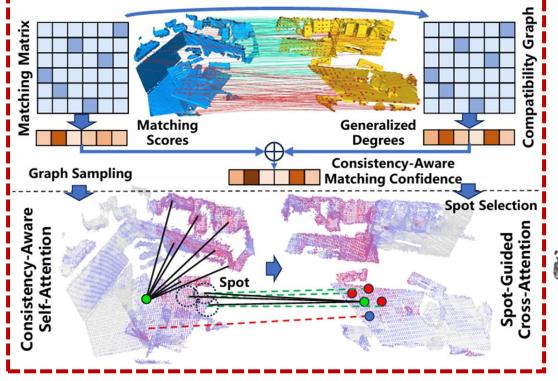


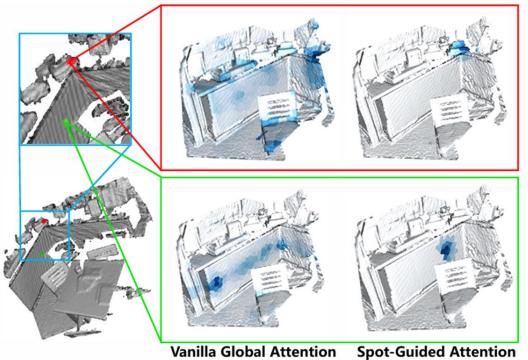
Dual softmax-based matching scores: $\mathbf{P}_{ij}^{(l)} = \underset{k \in \{1, \cdots, M'\}}{\operatorname{softmax}} (\mathbf{S}_{kj}^{(l)})_i \underset{k \in \{1, \cdots, M'\}}{\operatorname{softmax}} (\mathbf{S}_{ik}^{(l)})_j, \ \mathbf{S}^{(l)} = \hat{\mathbf{F}}_X^{(l)} (\hat{\mathbf{F}}_Y^{(l)})^\mathsf{T}.$

Estimated node correspondence set: $\mathcal{C}^{(l)} = \{(\mathbf{x}_i^S, \mathbf{y}_i^S) : \mathbf{x}_i^S \in \mathbf{X}^{1/4}, \mathbf{y}_i^S \in \mathbf{Y}^{1/4}\}.$

Geometric compatibility graph: $\beta_{ij} = \left[1 - d_{ij}^2/\sigma_c^2\right]^+, d_{ij} = \left|\|\mathbf{x}_i^S - \mathbf{x}_j^S\|_2 - \|\mathbf{y}_i^S - \mathbf{y}_j^S\|_2\right|.$

Spot selection for cross-attention: $\mathcal{S}(\mathbf{x}_i^S) = \bigcup_{\mathbf{x}_k^S \in \mathcal{N}_s(\mathbf{x}_i^S)} \mathcal{N}(\mathbf{y}_k^S)$





We evaluate our method on outdoor benchmarks KITTI and nuScenes using three metrics: Relative Translation Error (RTE), Relative Rotation Error (RRE), and Registration Recall (RR).

Performance highlights:

- > Highest registration recalls (robustness)
- Significantly lower RTE than state-of-the-arts (accuracy)

Source Frame with Keypoints

Target Frame with Keypoints

Sparse Keypoint Correspondences

Pose Estimation

Table 1: Registration performance on KITTI odometry dataset.

Model	Publication	RTE (cm)	RRE (°)	RR (%)
3DFeat-Net	ECCV 2018 [25]	25.9	0.25	96.0
FCGF	ICCV 2019 8	9.5	0.30	96.6
D3Feat	CVPR 2020 [9]	7.2	0.30	99.8
SpinNet	CVPR 2021 [19]	9.9	0.47	99.1
Predator	CVPR 2021 [20]	6.8	0.27	99.8
CoFiNet	NeurIPS 2021 [11]	8.2	0.41	99.8
GeoTransformer	CVPR 2022 [12]	6.8	0.24	99.8
OIF-Net	NeurIPS 2022 [13]	6.5	0.23	99.8
PEAL	CVPR 2023 [29]	6.8	0.23	99.8
DiffusionPCR	CVPR 2024 [30]	6.3	0.23	99.8
MAC	CVPR 2023 [43]	8.5	0.40	99.5
RegFormer	ICCV 2023 [44]	8.4	0.24	99.8
CAST		2.5	0.27	100.0

Table 2: Registration performance on nuScenes.

Method	RTE (m)	RRE (°)	RR (%)
Point-to-Point ICP [42]	0.25	0.25	18.8
Point-to-Plane ICP [42]	0.15	0.21	36.8
FGR [45]	0.71	1.01	32.2
RANSAC [15]	0.21	0.74	60.9
DCP [26]	1.09	2.07	56.8
IDAM [<mark>27</mark>]	0.47	0.79	88.0
FMR [<mark>46</mark>]	0.60	1.61	92.1
DGR [<mark>31</mark>]	0.21	0.48	98.4
HRegNet [24]	0.18	0.45	99.9
CAST	0.12	0.20	99.9

Performance highlights on indoor benchmarks:

- Superior robustness and efficiency
- Better accuracy than other registration baselines

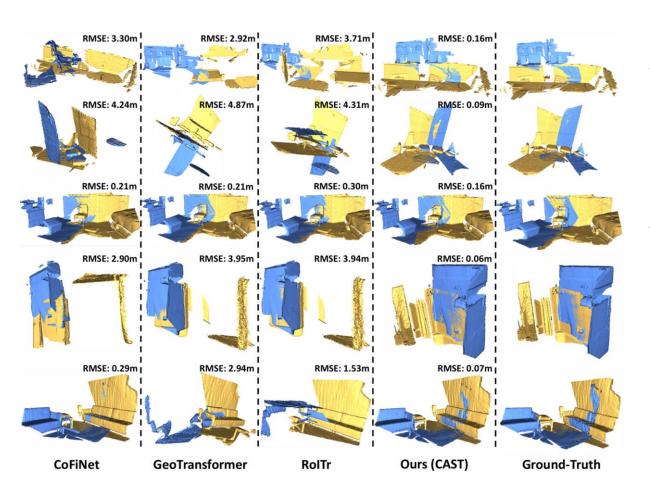


Table 3: Evaluation results on indoor RGBD point cloud datasets.

	Dataset	3DMatch				3DLoMatch				Average		
		Registration Recall (%)			Registration Recall (%)				Time (s)			
	Samples	5000	2500	1000	500	250	5000	2500	1000	500	250	All
eq	PerfectMatch [7]	78.4	76.2	71.4	67.6	50.8	33.0	29.0	23.3	17.0	11.0	-
oas	FCGF [8]	85.1	84.7	83.3	81.6	71.4	40.1	41.7	38.2	35.4	26.8	0.271
<u>r-</u>	D3Feat [9]	81.6	84.5	83.4	82.4	77.9	37.2	42.7	46.9	43.8	39.1	0.289
ptc	SpinNet [19]	88.6	86.6	85.5	83.5	70.2	59.8	54.9	48.3	39.8	26.8	90.804
descriptor-based	YOHO 50	90.8	90.3	89.1	88.6	84.5	65.2	65.5	63.2	56.5	48.0	13.529
qes	Predator [20]	89.0	89.9	90.6	88.5	86.6	59.8	61.2	62.4	60.8	58.1	0.759
	REGTR [47]			92.0					64.8			0.382
eq	CoFiNet [11]	89.3	88.9	88.4	87.4	87.0	67.5	66.2	64.2	63.1	61.0	0.306
oas	GeoTransformer [12]	92.0	91.8	91.8	91.4	91.2	75.0	74.8	74.2	74.1	73.5	0.192
<u>-</u>	OIF-Net [13]	92.4	91.9	91.8	92.1	91.2	76.1	75.4	75.1	74.4	73.6	0.555
Suc	RoITr [28]	91.9	91.7	91.8	91.4	91.0	74.7	74.8	74.8	74.2	73.6	0.457
nde	PEAL [29]	94.4	94.1	94.1	93.9	93.4	79.2	79.0	78.8	78.5	77.9	2.074
bo	BUFFER [48]			92.9					71.8			0.290
res	SIRA-PCR [49]	93.6	93.9	93.9	92.7	92.4	73.5	73.9	73.0	73.4	71.1	0.291
correspondence-based	DiffusionPCR [30]	94.4	94.3	94.5	94.0	93.9	80.0	80.4	79.2	78.8	78.8	1.964
J	CAST			95.2					75.1			0.182
							-					-

Table 9: Registration results on indoor RGBD point cloud datasets.

Methods		3DMatch			3DLoMatch	1
	RR (%)	RTE (cm)	RRE (°)	RR (%)	RTE (cm)	RRE (°)
RANSAC-1M [15]	88.42	9.42	3.05	9.77	14.87	7.01
RANSAC-4M [15]	91.44	8.38	2.69	10.44	15.14	6.91
TEASER++ [58]	85.77	8.66	2.73	46.76	12.89	4.12
SC^2 -PCR [59]	93.16	6.51	2.09	58.73	10.44	3.80
DGR [31]	88.85	7.02	2.28	43.80	10.82	4.17
PointDSC [32]	91.87	6.54	2.10	56.20	10.48	3.87
MAC [43]	93.72	6.54	2.02	59.85	9.75	3.50
FastMAC 60	92.67	6.47	2.00	58.23	10.81	3.80
CAST	96.48	5.64	1.71	76.13	8.47	2.75

Renlang Huang, Yufan Tang, Jiming Chen, and Liang Li*

Thanks for watching!

For more details, please refer to our paper.