
How Does Message Passing Improve Collaborative Filtering?

¹Snap Inc. ²University of Notre Dame, ³UCR

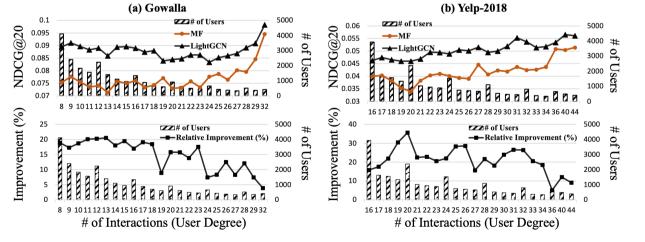
1. Neighbor information is more helpful than accompanying gradients from message passing

	Table 1: Performance of LightGCN variants.			
	Method	Yelp-2018	Gowalla	Amazon-book
	NDCG@20			
	LightGCN	6.36	9.88	8.13
	w/o grad.	6.16 (3.1%↓)	9.87 (0.1%↓)	7.80 (4.1%↓)
	w/o neigh. info	4.71 (25.9%↓)	6.95 (29.7%↓)	6.95 (14.5%↓)
<u></u>	w/o both	6.09 (4.2%↓)	9.83 (0.5%↓)	7.75 (4.7%↓)
	Recall@20			
	LightGCN	11.21	18.53	12.97
	w/o grad.	10.87 (3.0%↓)	18.51 (0.1%↓)	12.81 (1.2%↓)
	w/o neigh. info	8.44 (24.7%↓)	13.06 (29.5%↓)	11.25 (13.3%↓)
	w/o both	10.71 (4.5%↓)	18.42 (0.6%↓)	12.57 (3.1%↓)

We can skip message passing during training, yet achieving good enough performance.

Seeking Internship? We are hiring interns for 2025 to work on RecSys!

NEURAL INFORMATION PROCESSING SYSTEMS


Paper:

Apply here:

Code:

2. Message Passing Helps Low-degree Users More Compared with High-degrees

We can skip message passing on high-degree users (very expensive)!

Mix-up user and item embeddings during the testing only.

3. Proposed Method: TAG-CF -- Test-time Aggregation for CF $\mathbf{u}_i^* = \mathbf{u}_i + \sum |N(u_i)|^m |N(i_j)|^n \cdot \mathbf{i}_j, \mathbf{i}_i^* = \mathbf{i}_i + \sum |N(i_i)|^m |N(u_j)|^n \cdot \mathbf{u}_j$ $i_i \in N(u_i)$ $u_i \in N(i_i)$