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Motivating Example: A Personalized AI Teacher 

I want to learn 

to be a good 

teacher.

Imitate a human 

(expert) teacher with no 

online interaction. 

Name: Sophia

Previous Grades: A

Demographics: B

Family History: C

Visual Learner

Use verbal presentations

Use visual aids
…
.

Name: Alex

Previous Grades: B

Demographics: A

Family History: C

Auditory  Learner

Name: Rosie 

Previous Grades: A

Demographics: B

Family History: C

Read/Write Learner

Provide self-study time
Experts can observe and know more than the agent. 

Pure imitation leads to sub-optimal policies in such scenarios.
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Motivating Example: A Personalized AI Teacher 

I want to learn 

to be a good 

teacher.

Combine the prior 

Knowledge + online 

interaction 

Name: Loren

Previous Grades: A

Demographics: B

Family History: C

Use Prior Knowledge

Read/Write Learner: P %

Visual Learner: 100-P %

Teaching Policies

Provide self-study time: P %

Use visual aids: 100-P %
Interact with 

Student

Update P

Prior data limits the space of exploration. 

Online interaction identifies unobserved factors. 



Formalizing the Problem



Common Decision-Making Setting

Markov Decision Process (MDP): ℳ = (𝑆, 𝐴, 𝑇, 𝑅, 𝐻, 𝜌)

State 𝑆

Actions 𝐴

Transition Function 𝑇: 𝑆 × 𝐴 ⟶ Δ𝑆

Reward Function 𝑅: 𝑆 × 𝐴 ⟶ Δℝ

Horizon 𝐻

Episodes 𝐿



Our Decision-Making Setting

Markov Decision Process (MDP): ℳ = (𝑆, 𝐴, 𝑇, 𝑅, 𝐻, 𝜌, 𝝁∗)

State 𝑆

Actions 𝐴

Transition Function 𝑇: 𝑆 × 𝐴 × 𝑪 ⟶ Δ𝑆

Reward Function 𝑅: 𝑆 × 𝐴 × 𝑪 ⟶ Δℝ

Horizon 𝐻

Episodes 𝐿

Initial State Distribution 𝜌 𝜖 Δ𝑆

Distribution of Unobserved Factors 

(fixed distribution over learning styles)

𝒄 ~ 𝝁∗



Goal

Minimize the Bayesian Regret:

𝑅𝑒𝑔 ≔ 𝔼𝑐~𝜇∗ 

𝑡=1

𝐿

𝑉𝑐 𝜋𝑐 −𝔼𝜋𝑡~𝑝𝑡 𝑉𝑐 𝜋
𝑡

Value Function: 𝑉𝑐 𝜋 = 𝔼 

ℎ=1

𝐻

ȁ𝑟ℎ 𝜋, 𝑐

Optimal Policy: 𝜋𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋∈Π𝑉𝑐(𝜋)

History-Dependent Policies: 𝑝1, … . , 𝑝𝐿𝜖Δ(Π)



Methodology: Experts-as-Priors (ExPerior)
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c ∼ µME (·|hist or y)

a ∼ πc (·|s)

(s,a,s′,r)

? ∈ {      ,      , … ,     }

or µME
or c ∼ µME (·|hist or y )

We assume experts can observe the “unobserved” factors and are near-optimal (noisily-rational).

∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶 ∶ 𝑝𝐸 𝑎 𝑠; 𝑐) ∝ exp{𝛽. 𝑄𝑐
𝜋𝑐(𝑠, 𝑎)} where 𝑄𝑐

𝜋 𝑠, 𝑎 ≔ 𝔼 

ℎ′=ℎ

𝐻

𝑟ℎ′ȁ𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎, 𝜋, 𝑐
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Experiments and Implications 



Bandit Experiments – Bernoulli Multi-Armed Bandit



Additional Experiments – MDPs and Partially Observable MDPs

● Deep Sea Environment (MDP)



Additional Experiments – MDPs and Partially Observable MDPs

● Frozen Lake Environment (POMDP)
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Conclusion and Implication

● ExPerior provides a principled approach to combining offline prior data with online 

learning under unobserved heterogeneity in general decision-making settings.

● Our work opens new directions for more complex open-ended decision-making tasks, 

such as personalized adaptation of large language models.

data          (max-entropy) prior distribution           posterior sampling 



Thank You!
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