Sequential Decision-Making with Expert Demonstrations under Unobserved Heterogeneity

Vahid Balazadeh, Keertana Chidambaram, Viet Nguyen, Rahul G. Krishnan***** , Vasilis Syrgkanis*****

Image credit to ChatGPT

Name: Loren Previous Grades: A Demographics: B Family History: C

Formalizing the Problem

Common Decision-Making Setting

Our Decision-Making Setting

Goal

Minimize the Bayesian Regret:

$$
Reg := \mathbb{E}_{c \sim \mu^*} \left[\sum_{t=1}^{L} V_c(\pi_c) - \mathbb{E}_{\pi^t \sim p^t} [V_c(\pi^t)] \right]
$$

History-Dependent Policies:

Value Function: $V_c(\pi) = \mathbb{E} \left| \sum_{r=1}^{n} V_c(\pi) \right|$ $h=1$ \boldsymbol{H} r_h | π , c Optimal Policy: $\pi_c = argmax_{\pi \in \Pi} V_c(\pi)$

 $1, \ldots, p^L \epsilon \Delta(\Pi)$

Methodology: Experts-as-Priors (ExPerior)

ExPerior (Step 1): Experts Generate Demonstrations

We assume experts can **observe** the "unobserved" factors

ExPerior (Step 1): Experts Generate Demonstrations

We assume experts can **observe** the "unobserved" factors and are **near-optimal (noisily-rational).**

 P_1 **c** C_1 **or** \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} where **c** α **c** β **Step 3: Reinforcement** $Q_c^{\pi_c}(s, a)$ } where $Q_c^{\pi}(s, a) \coloneqq \mathbb{E} \left[\nabla$ $\{\beta, Q_c^{\pi_c}(s, a)\}\$ where $Q_c^{\pi}(s, a) \coloneqq \mathbb{E}\left[\sum_{h'=h} r_{h'}|s\right]$ $\forall s \in S, a \in A, c \in C : p_E(a \mid s; c) \propto \exp\{\beta.\, Q_c^{\pi_c}(s, a)\}$ where $Q_c^{\pi}(s, a) \coloneqq \mathbb{E} \left[\sum_{s \in S} \frac{1}{s} \sum_{s \in S} \mathbb{E} \left[\sum_{s \in S} \frac{1}{s} \mathbb{E} \left[\sum_{s \in S} \frac{1$ $\overline{h'=h}$ \boldsymbol{H} $r_{h'} | s_h = s, a_h = a, \pi, c$

ExPerior (Step 2): Infer a Prior Distribution over Unobserved Contexts

Trajectory

$$
\tau_E = (s_1, a_1, s_2, a_2, ..., s_H, a_H, s_{H+1})
$$

Trajectory

$$
\tau_E = (s_1, a_1, s_2, a_2, ..., s_H, a_H, s_{H+1})
$$

e E − (51, *a*1, 52, *a*2, …, 5µ, a
elihood of from expert datas Marginal likelihood of from expert dataset

$$
P_E(\tau_E; \mu) = \mathbb{E}_{c \sim \mu^*} [\rho(s_1) \prod_{h=1}^H p_E(a_h | s_h; c) T(s_{h+1} | s_h, a_h; c)]
$$

Trajectory

$$
\tau_E = (s_1, a_1, s_2, a_2, ..., s_H, a_H, s_{H+1})
$$

e E − (51, *a*1, 52, *a*2, …, 5µ, a
elihood of from expert datas Marginal likelihood of from expert dataset

$$
P_E(\tau_E; \mu) = \mathbb{E}_{c \sim \mu^*} [\rho(s_1) \prod_{h=1}^H p_E(a_h | s_h; c) T(s_{h+1} | s_h, a_h; c)]
$$

Parametric Prior: **Maximum marginal likelihood**

$$
\mu_{\theta^*} \epsilon \text{ argmin} \sum_{\tau \epsilon \text{ expert data}} -\log P_E(\tau; \mu_{\theta})
$$

Trajectory

$$
\tau_E = (s_1, a_1, s_2, a_2, ..., s_H, a_H, s_{H+1})
$$

e E − (51, *a*1, 52, *a*2, …, 5µ, a
elihood of from expert datas Marginal likelihood of from expert dataset

$$
P_E(\tau_E; \mu) = \mathbb{E}_{c \sim \mu^*} [\rho(s_1) \prod_{h=1}^H p_E(a_h | s_h; c) T(s_{h+1} | s_h, a_h; c)]
$$

parametric form of the prior? What if there is no existing knowledge of the

Trajectory

$$
\tau_E = (s_1, a_1, s_2, a_2, \dots, s_H, a_H, s_{H+1})
$$

e E − (51, *a*1, 52, *a*2, …, 5µ, a
elihood of from expert datas Marginal likelihood of from expert dataset

$$
P_E(\tau_E; \mu) = \mathbb{E}_{c \sim \mu^*} [\rho(s_1) \prod_{h=1}^H p_E(a_h | s_h; c) T(s_{h+1} | s_h, a_h; c)]
$$

parametric form of the prior? What if there is no existing knowledge of the

Algorithm Step 3: Reinforcement Learning set or all plants
C The high-probability set of all plausible prior distribution

$$
\mathcal{P}(\varepsilon) := \left\{ \mu; \ D_{KL} \left(\widehat{P}_E || P_E(\tau_E; \mu) \right) \le \varepsilon \right\}
$$

Update

Algorithm Step 3: Reinforcement Learning set or all plants
C The high-probability set of all plausible prior distribution

$$
\mathcal{P}(\varepsilon) \coloneqq \left\{ \mu; \ D_{KL} \left(\widehat{P}_E \middle\| P_E(\tau_E; \mu) \right) \le \varepsilon \right\}
$$

$$
\mu_{ME} = argmax_{\mu \in \mathcal{P}(\varepsilon)} H(\mu)
$$

Update

Algorithm Step 3: Reinforcement Learning set or all plants
C The high-probability set of all plausible prior distribution

$$
\mathcal{P}(\varepsilon) := \left\{ \mu; \ D_{KL} \left(\widehat{P}_E || P_E(\tau_E; \mu) \right) \le \varepsilon \right\}
$$

$$
\mu_{ME} = argmax_{\mu \in \mathcal{P}(\varepsilon)} H(\mu)
$$

History $\mathcal{P}(\varepsilon)$ is convex! Solve using Fenchel's duality theorem.

ExPerior (Step 3): Exploration with Posterior Sampling

Experiments and Implications

Bandit Experiments – Bernoulli Multi-Armed Bandit

Additional Experiments – MDPs and Partially Observable MDPs

● Deep Sea Environment (MDP)

Additional Experiments – MDPs and Partially Observable MDPs

● Frozen Lake Environment (POMDP)

Conclusion and Implication

● ExPerior provides a principled approach to combining offline prior data with online learning under unobserved heterogeneity in general decision-making settings.

Conclusion and Implication

● ExPerior provides a principled approach to combining offline prior data with online learning under unobserved heterogeneity in general decision-making settings.

 $data \longrightarrow$ (max-entropy) prior distribution \longrightarrow posterior sampling

Conclusion and Implication

● ExPerior provides a principled approach to combining offline prior data with online learning under unobserved heterogeneity in general decision-making settings.

 $data \longrightarrow$ (max-entropy) prior distribution \longrightarrow posterior sampling

● Our work opens new directions for more complex open-ended decision-making tasks, such as personalized adaptation of large language models.

Thank You!