Sequential Decision-Making with Expert Demonstrations under Unobserved Heterogeneity

Vahid Balazadeh, Keertana Chidambaram, Viet Nguyen, Rahul G. Krishnan*, Vasilis Syrgkanis*

Image credit to ChatGPT

Formalizing the Problem

Common Decision-Making Setting

Markov Decision Process (MDP):	$\mathcal{M} = (S, A, T, R, H, \rho)$			
State	S			
Actions	A			
Transition Function	$T: S \times A \longrightarrow \Delta S$			
Reward Function	$R:S \times A \longrightarrow \Delta \mathbb{R}$			
Horizon	Н			
Episodes	L			

Our Decision-Making Setting

Markov Decision Process (MDP):	$\mathcal{M} = (S, A, T, R, H, \rho, \boldsymbol{\mu}^*)$
State	S
Actions	A
Transition Function	$T: S \times A \times \mathbf{C} \longrightarrow \Delta S$
Reward Function	$R:S \times A \times \mathbf{C} \longrightarrow \Delta \mathbb{R}$
Horizon	Н
Episodes	L
Initial State Distribution	$ ho \ \epsilon \ \Delta S$
Distribution of Unobserved Factors (fixed distribution over learning styles)	$c \sim \mu^*$

Goal

Minimize the Bayesian Regret:

$$Reg \coloneqq \mathbb{E}_{c \sim \mu^*} \left[\sum_{t=1}^L V_c(\pi_c) - \mathbb{E}_{\pi^t \sim p^t} [V_c(\pi^t)] \right]$$

Value Function:

Optimal Policy:

History-Dependent Policies:

 $V_{c}(\pi) = \mathbb{E}\left[\sum_{h=1}^{H} r_{h} | \pi, c\right]$ $\pi_{c} = \arg \max_{\pi \in \Pi} V_{c}(\pi)$

 $p^1, \ldots, p^L \epsilon \Delta(\Pi)$

Methodology: Experts-as-Priors (ExPerior)

ExPerior (Step 1): Experts Generate Demonstrations

We assume experts can **observe** the "unobserved" factors

ExPerior (Step 1): Experts Generate Demonstrations

We assume experts can observe the "unobserved" factors and are near-optimal (noisily-rational).

 $\forall s \in S, a \in A, c \in C : p_E(a \mid s; c) \propto \exp\{\beta. Q_c^{\pi_c}(s, a)\} \text{ where } Q_c^{\pi}(s, a) \coloneqq \mathbb{E}\left[\sum_{h'=h}^{H} r_{h'}|s_h = s, a_h = a, \pi, c\right]$

ExPerior (Step 2): Infer a Prior Distribution over Unobserved Contexts

Trajectory

$$\tau_E = (s_1, a_1, s_2, a_2, \dots, s_H, a_H, s_{H+1})$$

Trajectory

$$\tau_E = (s_1, a_1, s_2, a_2, \dots, s_H, a_H, s_{H+1})$$

Marginal likelihood of from expert dataset

$$P_{E}(\tau_{E};\mu) = \mathbb{E}_{c \sim \mu^{*}} \left[\rho(s_{1}) \prod_{h=1}^{H} p_{E}(a_{h}|s_{h};c) T(s_{h+1}|s_{h},a_{h};c) \right]$$

Trajectory

$$\tau_E = (s_1, a_1, s_2, a_2, \dots, s_H, a_H, s_{H+1})$$

Marginal likelihood of from expert dataset

$$P_E(\tau_E;\mu) = \mathbb{E}_{c \sim \mu^*} \big[\rho(s_1) \prod_{h=1}^H p_E(a_h | s_h; c) T(s_{h+1} | s_h, a_h; c) \big]$$

Parametric Prior: Maximum marginal likelihood

$$\mu_{\theta^*} \in argmin \sum_{\tau \in expert \ data} -\log P_E(\tau;\mu_{\theta})$$

Trajectory

$$\tau_E = (s_1, a_1, s_2, a_2, \dots, s_H, a_H, s_{H+1})$$

Marginal likelihood of from expert dataset

$$P_{E}(\tau_{E};\mu) = \mathbb{E}_{c \sim \mu^{*}} \left[\rho(s_{1}) \prod_{h=1}^{H} p_{E}(a_{h}|s_{h};c) T(s_{h+1}|s_{h},a_{h};c) \right]$$

What if there is no existing knowledge of the parametric form of the prior?

Trajectory

$$\tau_E = (s_1, a_1, s_2, a_2, \dots, s_H, a_H, s_{H+1})$$

Marginal likelihood of from expert dataset

$$P_{E}(\tau_{E};\mu) = \mathbb{E}_{c \sim \mu^{*}} \left[\rho(s_{1}) \prod_{h=1}^{H} p_{E}(a_{h}|s_{h};c) T(s_{h+1}|s_{h},a_{h};c) \right]$$

What if there is no existing knowledge of the parametric form of the prior?

The high-probability set of all plausible prior distribution

$$\mathcal{P}(\varepsilon) \coloneqq \left\{ \mu; \ D_{KL}\left(\hat{P}_{E} \| P_{E}(\tau_{E}; \mu)\right) \leq \varepsilon \right\}$$

The high-probability set of all plausible prior distribution

$$\mathcal{P}(\varepsilon) \coloneqq \left\{ \mu; \ D_{KL}\left(\hat{P}_{E} \| P_{E}(\tau_{E}; \mu)\right) \leq \varepsilon \right\}$$

$$\mu_{ME} = argmax_{\mu \in \mathcal{P}(\varepsilon)} H(\mu)$$

The high-probability set of all plausible prior distribution

$$\mathcal{P}(\varepsilon) \coloneqq \left\{ \mu; \ D_{KL}\left(\hat{P}_{E} \| P_{E}(\tau_{E}; \mu)\right) \leq \varepsilon \right\}$$

$$\mu_{ME} = argmax_{\mu \in \mathcal{P}(\varepsilon)}H(\mu)$$

 $\mathcal{P}(\varepsilon)$ is convex! Solve using Fenchel's duality theorem.

ExPerior (Step 3): Exploration with Posterior Sampling

Experiments and Implications

Bandit Experiments – Bernoulli Multi-Armed Bandit

Additional Experiments - MDPs and Partially Observable MDPs

• Deep Sea Environment (MDP)

Additional Experiments – MDPs and Partially Observable MDPs

• Frozen Lake Environment (POMDP)

	Fixed # Hazard = 9				Fixed $\beta = 1$					
	$\beta = 0.1$	$\beta = 1$	$\beta = 2.5$	$\beta = 10$	# Hazard $= 2$	# Hazard = 5	# Hazard $= 7$	# Hazard = 9		
	(POMDP)									
ExPerior-MaxEnt	$\textbf{-22.58} \pm 1.17$	$\textbf{6.00} \pm \textbf{0.00}$	3.58 ± 0.89	1.62 ± 1.85	11.47 ± 0.52	$\textbf{5.71} \pm \textbf{0.67}$	$\textbf{6.00} \pm \textbf{0.00}$	$\textbf{6.00} \pm \textbf{0.00}$		
ExPerior-Param	$\textbf{-23.32}\pm0.69$	$\textbf{-4.31} \pm \textbf{1.80}$	5.27 ± 0.51	$\textbf{6.00} \pm \textbf{0.00}$	$\textbf{12.00} \pm \textbf{0.37}$	2.11 ± 1.41	5.42 ± 0.40	$\textbf{-4.31} \pm \textbf{1.80}$		
Naïve Boot-DQN	$\textbf{-23.32}\pm0.69$	$\textbf{-23.32}\pm0.69$	$\textbf{-23.32}\pm0.69$	$\textbf{-23.32}\pm0.69$	$\textbf{-14.36} \pm 5.88$	$\textbf{-20.57} \pm \textbf{2.91}$	$\textbf{-20.39} \pm 1.75$	$\textbf{-23.32}\pm0.69$		
ExPLORe	$\textbf{5.99} \pm \textbf{0.00}$	$\textbf{6.00} \pm \textbf{0.00}$	$\textbf{6.00} \pm \textbf{0.00}$	$\textbf{6.00} \pm \textbf{0.00}$	$\textbf{-30.68} \pm \textbf{12.40}$	$\textbf{-10.64} \pm \textbf{16.64}$	$\textbf{-13.00} \pm \textbf{19.00}$	$\textbf{6.00} \pm \textbf{0.00}$		
Optimal	6.00 ± 0.00	6.00 ± 0.00	6.00 ± 0.00	6.00 ± 0.00	12.00 ± 0.37	6.53 ± 0.31	6.00 ± 0.00	6.00 ± 0.00		
	(MDP)									
ExPerior-MaxEnt	$\textbf{-23.36} \pm 1.26$	12.26 ± 0.29	12.68 ± 0.03	$\textbf{12.71} \pm \textbf{0.03}$	$\textbf{13.02} \pm \textbf{0.18}$	$\textbf{12.78} \pm \textbf{0.11}$	$\textbf{12.78} \pm \textbf{0.06}$	12.26 ± 0.29		
ExPerior-Param	$\textbf{-25.53} \pm \textbf{2.35}$	$\textbf{12.64} \pm \textbf{0.08}$	$\textbf{12.70} \pm \textbf{0.03}$	12.68 ± 0.03	13.00 ± 0.18	$\textbf{12.78} \pm \textbf{0.12}$	12.73 ± 0.07	$\textbf{12.64} \pm \textbf{0.08}$		
Naïve Boot-DQN	$\textbf{-23.32}\pm0.69$	$\textbf{-23.32}\pm0.69$	$\textbf{-23.32}\pm0.69$	$\textbf{-23.32}\pm0.69$	$\textbf{-14.39} \pm 5.22$	$\textbf{-20.99} \pm \textbf{2.86}$	$\textbf{-20.39} \pm 1.75$	$\textbf{-23.32}\pm0.69$		
ExPLORe	$\textbf{11.74} \pm \textbf{0.41}$	11.75 ± 0.63	11.96 ± 0.28	12.3 ± 0.22	$\textbf{-113.84} \pm \textbf{17.50}$	$\textbf{-54.89} \pm 13.75$	-10.00 ± 7.60	11.75 ± 0.63		
Optimal	12.71 ± 0.03	12.71 ± 0.03	12.71 ± 0.03	12.71 ± 0.03	13.02 ± 0.18	12.78 ± 0.11	12.76 ± 0.06	12.64 ± 0.03		

Conclusion and Implication

• ExPerior provides a principled approach to combining offline prior data with online learning under unobserved heterogeneity in general decision-making settings.

Conclusion and Implication

• ExPerior provides a principled approach to combining offline prior data with online learning under unobserved heterogeneity in general decision-making settings.

data \longrightarrow (max-entropy) prior distribution \longrightarrow posterior sampling

Conclusion and Implication

• ExPerior provides a principled approach to combining offline prior data with online learning under unobserved heterogeneity in general decision-making settings.

data \longrightarrow (max-entropy) prior distribution \longrightarrow posterior sampling

• Our work opens new directions for more complex open-ended decision-making tasks, such as personalized adaptation of large language models.

Thank You!