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New task:
Open-World Video Instance Segmentation and Captioning 

(OW-VISCap)

For both seen (closed-world) or never before seen (open-world) objects

Detect, segment and track objects 
across frames

Describe the objects with 
rich captions
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OW-VISCapTor: Evaluation

Open-World Video Instance Segmentation
OWTA improved by 5.6 points

Dense Video Object Captioning
CapA improved by 7.1 points



Motivation
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Prior Work on VIS

car, car, pedestrian, pedestrian, pedestrian, pedestrian, 
pedestrian, pedestrian, pedestrian

Assigns one word label to segmented objects [1, 2, 3] in the closed world

One word labels convey a limited information

[1] Choudhuri et al., CVPR 2023
[2] Huang et al., NeurIPS 2022
[3] Wang et al., CVPR 2021



Video-level or image-level captioning [1, 2]
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Video-level or image-level captioning [1, 2]

Prior Work on Captioning

[1] Jin et al., NeurIPS 2022
[2] Li et al., arXiv 2023

A street with people walking and cars driving

Doesn’t capture object-centric details



a car is driving down the street
a car driving down the street 

a woman walking down the street
a man with a crutch crossing the street

a woman is standing at a red table by the side of a street
a trash can by the side of a street

...
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a man with a crutch crossing the street

New Task: OW-VISCap
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OW-VISCapTor to Address OW-VISCap

AbstracTors for Open-World Video Instance Segmentation and Captioning

Networks that project information from one 
space to another
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Abstractors for OW-VISCap: Challenges

● Haven’t been explored to connect object and language spaces
● How to extend them to the open-world without prompts?
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Open-World Object Discovery

Initialized from SAM [1]

[1] Kirillov et al., arXiv 2023
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Object-Centric Captioning
   : text embeddings
   :   -th object query
   : text query for   -th object
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Results on BURST [1] Dataset

[1] Athar et al., WACV 2023
[2] Liu et al.’ CVPR 2022
[3] Cheng et al., CVPR 2022
[4] Cheng et al., Neurips 2021
[5] Cheng et al., ICCV 2023
[6] Qi et al., PAMI 2022Segmentation of open-world and closed-world objects

Method Accuracy
Unseen Overall Seen

OWTB [2] 38.8 55.8 59.8
Mask2Former [3] + STCN [4] 25.0 64.6 71.0
Mask2Former [3] + DEVA [5] 42.3 69.5 74.6

EntitySeg [6] + DEVA [5] 49.6 68.8 72.7
Ours + DEVA [5] 55.2 69.0 73.5



Results on VidSTG [1] Dataset

[1] Zhang et al., CVPR 2020
[2] Zhou arXiv 2023
[3] Choudhuri et al., CVPR 2023

Method Mode
Captioning 
accuracy

Overall 
accuracy

DenseVOC-DS (joint training) [2] offline 36.8 51.6
DenseVOC-DS (disjoint training) [2] offline 10.0 28.0

Ours + CAROQ [3] online 43.9 53.1

Bounding box detections and captioning on 
closed-world objects
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a tractor with black and 
orange front and rear.

a woman is riding an 
orange lawn mower.

a white dog near a tractor.

a large construction 
truck with a trailer on it.

a car is driving in the 
rain on a street.

...
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To Summarize

● We propose a new task: Open-World Video Instance Segmentation and 
Captioning (OW-VISCap).

● OW-VISCapTor:
○ Object abstractor: spatially rich open-world object queries
○ Object-to-text abstractor: rich object-centric captions

● Our generalized approach surpasses individual SOTA on open-world object 
discovery and video object captioning



Thank You!

Please visit our poster on 

Wed, Dec 11, Poster Session 2 (4:30 - 7:30 p.m. PST) 

Website: 
https://anwesachoudhuri.github.io/OpenWorldVISCap/  

https://anwesachoudhuri.github.io/OpenWorldVISCap/

