

OW-VISCapTor: Abstractors for Open-World Video Instance Segmentation and Captioning

Anwesa Choudhuri, Girish Chowdhary, Alexander Schwing University of Illinois at Urbana-Champaign

Wed, Dec 11, Poster Session 2 (4:30 - 7:30 p.m. PST)

Overview

New task: Open-World Video Instance Segmentation and Captioning (OW-VISCap)

New task:

Open-World Video Instance Segmentation and Captioning (OW-VISCap)

New task:

Open-World Video Instance Segmentation and Captioning (OW-VISCap)

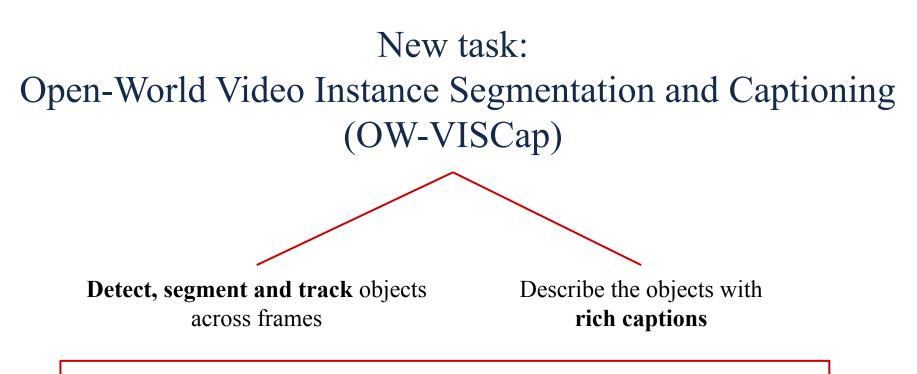
Detect, segment and track objects across frames

New task:

Open-World Video Instance Segmentation and Captioning (OW-VISCap)

Detect, segment and track objects across frames

Describe the objects with rich captions

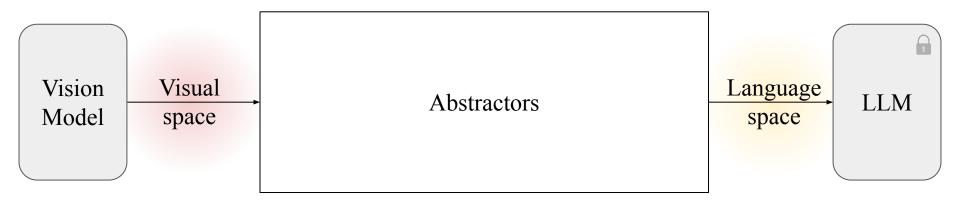


For both seen (closed-world) or never before seen (open-world) objects

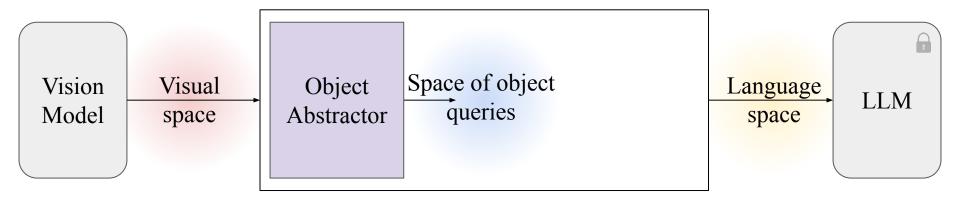
OW-VISCap: Addressed by Abstractors

Abstractors

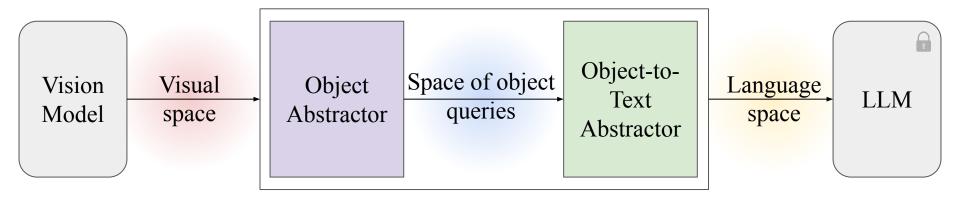
OW-VISCap: Addressed by Abstractors



Addressed by Developing Abstractors



Addressed by Developing Abstractors



OW-VISCapTor: Evaluation

Open-World Video Instance Segmentation **OWTA improved by 5.6 points** Dense Video Object Captioning CapA improved by 7.1 points

Motivation

Choudhuri et al., CVPR 2023
 Huang et al., NeurIPS 2022
 Wang et al., CVPR 2021

Prior Work on VIS

Assigns one word label to segmented objects [1, 2, 3] in the closed world

car, car, pedestrian, pedestrian, pedestrian, pedestrian, pedestrian, pedestrian, pedestrian, pedestrian

Choudhuri et al., CVPR 2023
 Huang et al., NeurIPS 2022
 Wang et al., CVPR 2021

Prior Work on VIS

Assigns one word label to segmented objects [1, 2, 3] in the closed world

One word labels convey a limited information

car, car, pedestrian, pedestrian, pedestrian, pedestrian, pedestrian, pedestrian, pedestrian, pedestrian, pedestrian

[1] Jin et al., NeurIPS 2022[2] Li et al., arXiv 2023

Prior Work on Captioning

Video-level or image-level captioning [1, 2]

A street with people walking and cars driving

[1] Jin et al., NeurIPS 2022[2] Li et al., arXiv 2023

Prior Work on Captioning

Video-level or image-level captioning [1, 2]

Doesn't capture object-centric details

A street with people walking and cars driving

New Task: OW-VISCap

a car is driving down the street a car driving down the street a woman walking down the street a man with a crutch crossing the street a woman is standing at a red table by the side of a street a trash can by the side of a street

New Task: OW-VISCap

a man with a crutch crossing the street

OW-VISCapTor to Address OW-VISCap

AbstracTors for Open-World Video Instance Segmentation and Captioning

OW-VISCapTor to Address OW-VISCap

AbstracTors for Open-World Video Instance Segmentation and Captioning

Networks that project information from one space to another

Abstractors for OW-VISCap: Challenges

• Haven't been explored to connect object and language spaces

Abstractors for OW-VISCap: Challenges

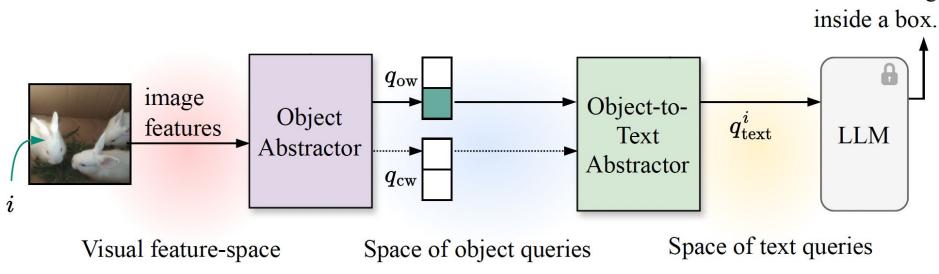
- Haven't been explored to connect object and language spaces
- How to extend them to the open-world without prompts?

OW-VISCapTor

 q_{ow} : open-world object queries q_{cw} : closed-word object queries q_{text}^i : text query for *i*-th object

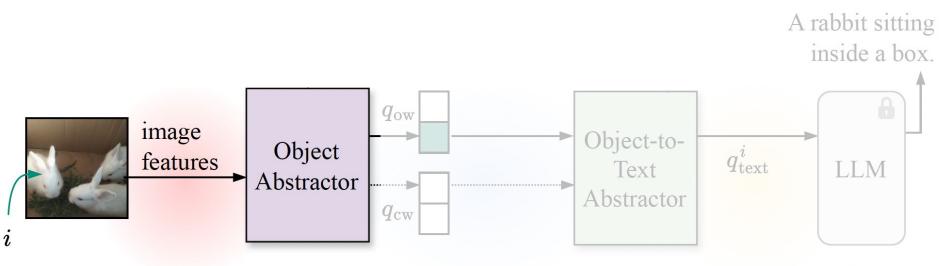
A rabbit sitting

OW-VISCapTor



 q_{ow} : open-world object queries q_{cw} : closed-word object queries q_{text}^i : text query for *i*-th object

Open-World Object Discovery

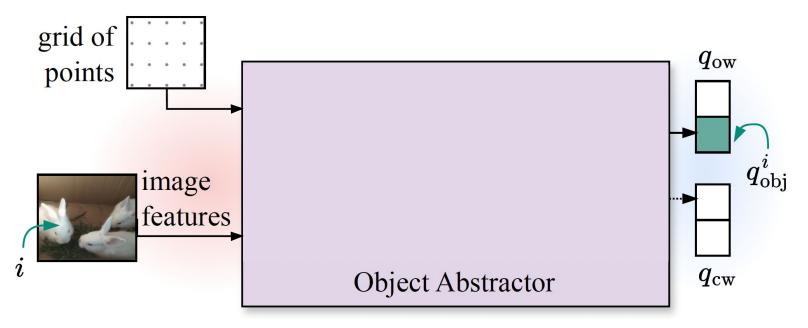


Visual feature-space

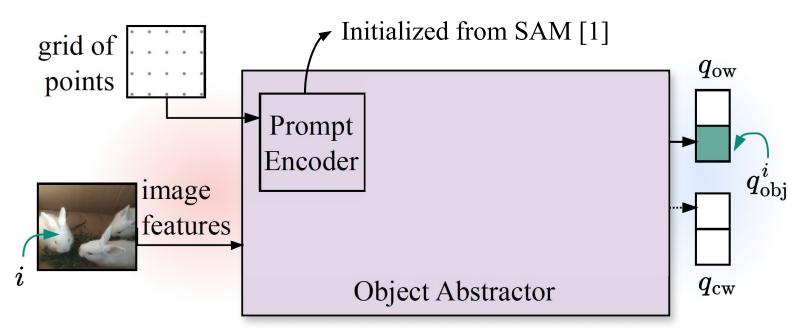
Space of object queries

Space of text queries

 q_{ow} : open-world object queries q_{cw} : closed-word object queries q_{obj}^i : *i*-th object query



q_{ow} : open-world object queries q_{cw} : closed-word object queries q_{obj}^i : *i*-th object query



 e_{ow} : open-world embeddings q_{ow} : open-world object queries q_{cw} : closed-word object queries q_{obj}^{i} : *i*-th object query

grid of $q_{ m ow}$ points $e_{\rm ow}$ Prompt Encoder $q^{*}_{ m obj}$ image features i $q_{ m cw}$ **Object Abstractor**

grid of q_{ow} points $e_{\rm ow}$ Prompt Encoder $q_{ m obj}^{\,\prime}$ image features $e_{\rm cw}$ i $q_{\rm cw}$ **Object Abstractor**

grid of $q_{ m ow}$ points $e_{\rm ow}$ Prompt Transformer Encoder $q_{ m obj}^{\iota}$ Decoder image features $e_{\rm cw}$ i $q_{\rm cw}$ **Object Abstractor**

grid of $q_{\rm ow}$ points $e_{\rm ow}$ Prompt Transformer Encoder $q^{*}_{ m obj}$ Decoder image features $e_{\rm cw}$ i $q_{ m cw}$ **Object Abstractor**

grid of $q_{ m ow}$ points $e_{\rm ow}$ Prompt Transformer Encoder $q^{\imath}_{ m obj}$ Decoder image features $e_{\rm cw}$ 2 $q_{\rm cw}$ **Object Abstractor**

 q_{ow} : open-world object queries q_{cw} : closed-word object queries q_{text}^i : text query for *i*-th object DH: Detection Head

mask of igrid of A rabbit sitting DH inside a box. points $q_{\rm ow}$ image Object-to-Object $q^i_{ m text}$ features Text Abstractor Abstractor $q_{ m cw}$

Visual feature-space

Object-Centric Captioning

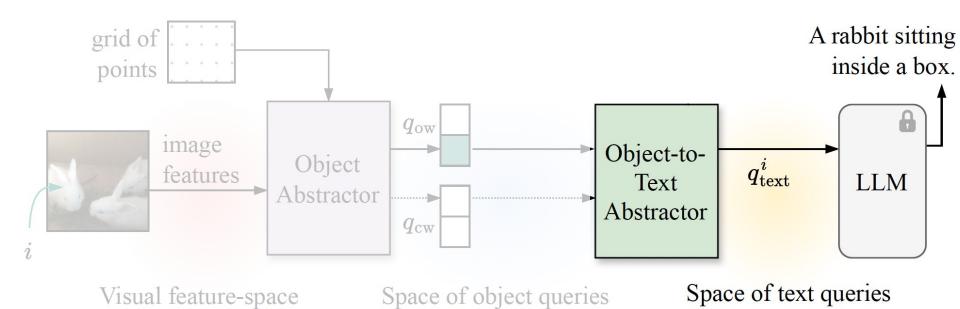
Space of object queries

Space of text queries

i

 q_{ow} : open-world object queries q_{cw} : closed-word object queries q_{text}^i : text query for *i*-th object

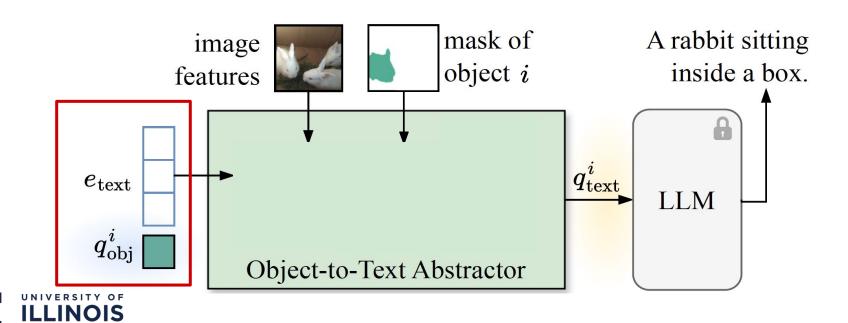
Object-Centric Captioning



UNIVERSITY OF

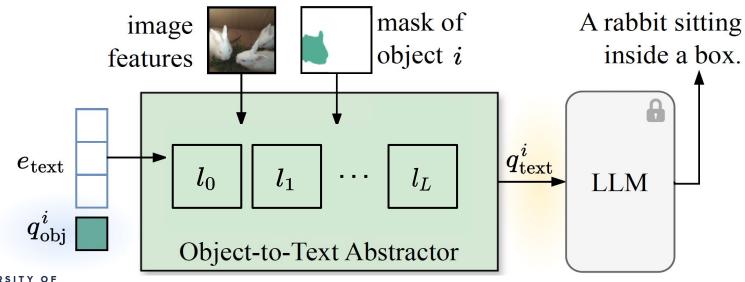
 e_{text} : text embeddings q_{obj}^{i} : *i*-th object query q_{text}^{i} : text query for *i*-th object

Object-Centric Captioning



 e_{text} : text embeddings q_{obj}^{i} : *i*-th object query q_{text}^{i} : text query for *i*-th object

Object-Centric Captioning



Results

Results on BURST [1] Dataset

Segmentation of open-world and closed-world objects

[1] Athar et al., WACV 2023
 [2] Liu et al.' CVPR 2022
 [3] Cheng et al., CVPR 2022
 [4] Cheng et al., Neurips 2021
 [5] Cheng et al., ICCV 2023
 [6] Qi et al., PAMI 2022

Method	Accuracy		
	Unseen	Overall	Seen
OWTB [2]	38.8	55.8	59.8
Mask2Former [3] + STCN [4]	25.0	64.6	71.0
Mask2Former [3] + DEVA [5]	42.3	69.5	74.6
EntitySeg [6] + DEVA [5]	<u>49.6</u>	68.8	72.7
Ours + DEVA [5]	55.2	<u>69.0</u>	<u>73.5</u>

Zhang et al., CVPR 2020
 Zhou arXiv 2023
 Choudhuri et al., CVPR 2023

Results on VidSTG [1] Dataset

Bounding box detections and captioning on closed-world objects

		Captioning	Overall
Method	Mode	accuracy	accuracy
DenseVOC-DS (joint training) [2]	offline	36.8	51.6
DenseVOC-DS (disjoint training) [2]	offline	10.0	28.0
Ours + CAROQ [3]	online	43.9	53.1

<u>a large construction</u> <u>truck with a trailer on it.</u>

a car is driving in the rain on a street.

...

<u>a large construction</u> <u>truck with a trailer on it.</u>

a car is driving in the rain on a street.

<u>a tractor with black and</u> <u>orange front and rear.</u>

a woman is riding an orange lawn mower.

a white dog near a tractor.

To Summarize

• We propose a new task: Open-World Video Instance Segmentation and Captioning (OW-VISCap).

To Summarize

- We propose a new task: Open-World Video Instance Segmentation and Captioning (OW-VISCap).
- OW-VISCapTor:
 - **Object abstractor**: spatially rich open-world object queries
 - **Object-to-text abstractor**: rich object-centric captions

To Summarize

- We propose a new task: Open-World Video Instance Segmentation and Captioning (OW-VISCap).
- OW-VISCapTor:
 - **Object abstractor**: spatially rich open-world object queries
 - **Object-to-text abstractor**: rich object-centric captions
- Our generalized approach surpasses individual SOTA on open-world object discovery and video object captioning

Thank You!

Please visit our poster on

Wed, Dec 11, Poster Session 2 (4:30 - 7:30 p.m. PST)

Website:

https://anwesachoudhuri.github.io/OpenWorldVISCap/

