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Background: Parameter-Efficient Fine-Tuning

Models (GPTs, Vision Transformers) are becoming increasingly large.
Full parameter fine-tuning is resource-intensive.

Parameter-Efficient Fine-Tuning (PEFT): Adjusting a small subset of parameters.
Higher Performance.
Less parameter storage.

Issues: lack of generalizability & forgetting pre-trained knowledge.

Goal: improve generalization & retain pre-trained knowledge.
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Motivation: Theorem 1

Theorem 1: Smaller gradient norm and larger dataset lead to better generalization
on unseen data.

Flatter
minimum

Sharper
minimum

Large gradients norms Small gradients norms

+ Small
training dataset

Large
training dataset+

Poor generalization Good generalization

Ó

Robust to
unseen data

Ó

Rich knowledge for
unseen data
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Solution for better generalization and retain knowledge

Smaller Gradients Norms

Ð Regularize gradients

Larger dataset

small dataset in downstream tasks
Retain knowledge by fine-tuned pre-trained alignment (FPA)

Pre-trained
!!

Fine-tuned
!! + Δ$

! %! ⋅ − %(⋅) ""

%!(⋅)

%(⋅) 1e-3 5e-3 0.01 0.05 0.1 0.5 1 5 10 50 100 500 1e3 5e3 1e4 5e4λ=

1e4

2e4

∥∂f
∂θ

∥2 Baseline
+FPA

Gradient norms & reg. strength λ (CIFAR-100, ViT-B/16)

Prop 1. Naive alignment does not guarantee smaller gradient norms
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Our method: PACE

To regularize gradients and align fine-tuned pre-trained models,
PACE perturbs adapter features and enforces consistency across perturbations.

||4# 3 − 4"(3)||""3

Transformer
Block loss

4#(3)

4"(3)

share weights
non-shared noises

Transformer block with adapter perturbed by noise Consistency regularization between two outputs of x

head

Multi-Head
Attention

Norm

MLP

Norm

!!
"!

Δ!
∆"

ℎ!(⋅)
∆ℎ(⋅)

ℎ(⋅)= ℎ!(⋅)++⊙ Δℎ(⋅)
where + ∼ .(/, 1"2)

×"

Transformer
Block head

×"
Transformer
Block

Adapter ∆ℎ and
pre-trained ℎ!
in linear layer ℎ

W 0&b0, ∆W&∆b: pre-trained/adapter linear weights; x: sample; L: number of blocks

PACE improves generalization and retains pre-trained knowledge
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Our method: PACE

To regularize gradients and align fine-tuned pre-trained models,
PACE perturbs adapter features and enforces consistency across perturbations.
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PACE: Theorem 2

Theorem 2: PACE regularizes first- and second-order gradients

θ: model weights; z: noise.
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PACE:Theorem 3

Theorem 3: PACE minimize fine-tuned pre-trained distance to retain knowledge.
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Experiments: Image Classification
Results on VTAB-1K with ViT-B/16.

Method Natural Specialized Structured

C
ifa

r1
00

C
al

te
ch

10
1

D
TD

Fl
ow

er
s1

02

Pe
ts

SV
H

N

Su
n3

97

C
am

el
yo

n

Eu
ro

SA
T

Re
si

sc
45

Re
tin

op
at

hy

C
le

vr
-C

ou
nt

C
le

vr
-D

ist

D
M

La
b

K
IT

TI
-D

ist

dS
pr

-L
oc

dS
pr

-O
ri

sN
O

R
B

-A
zi

m

N
sO

R
B

-E
le

M
ea

n
A

cc
.

Full 68.9 87.7 64.3 97.3 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 68.9
Linear 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 57.6
VPT-Deep 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 72.0
Adapter 69.2 90.1 68.0 98.8 89.9 82.8 54.3 84.0 94.9 81.9 75.5 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6 73.9
AdaptFormer 70.8 91.2 70.5 99.1 90.9 86.6 54.8 83.0 95.8 84.4 76.3 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1 74.7
LoRA 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.9 95.3 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 74.5
NOAH 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 74.2
RepAdapter 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 76.1
RLRR 75.6 92.4 72.9 99.3 91.5 89.8 57.0 86.8 95.2 85.3 75.9 79.7 64.2 53.9 82.1 83.9 53.7 33.4 43.6 76.7
GLoRA 76.4 92.9 74.6 99.6 92.5 91.5 57.8 87.3 96.8 88.0 76.0 83.1 67.3 54.5 86.2 83.8 52.9 37.0 41.4 78.0
Baseline 74.9 93.3 72.0 99.4 91.0 91.5 54.8 83.2 95.7 86.9 74.2 83.0 70.5 51.9 81.4 77.9 51.7 33.6 44.4 76.4
+PACE 79.0 94.2 73.6 99.4 92.4 93.7 58.0 87.4 96.4 89.3 77.1 84.9 70.9 54.9 84.3 84.7 57.3 39.3 44.8 79.0
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Experiments: Text classification & generation

Results for GLUE w/ RoBERTabase. Matthew’s/Pearson
correlation for COLA/STSB, and accuracy for others.

Method COLA STSB MRPC RTE QNLI SST2 Avg.
Full 63.6 91.2 90.2 78.7 92.8 94.8 85.2
BitFit 62.0 90.8 92.7 81.5 91.8 93.7 85.4
Adapt 62.6 90.3 88.4 75.9 93.0 94.7 84.2
VeRA 65.6 90.7 89.5 78.7 91.8 94.6 85.2
LoRA 63.4 91.5 89.7 86.6 93.3 95.1 86.6
+PACE 66.2 92.0 91.4 86.9 93.6 95.6 87.6

Results for GSM-8K w/
Phi-3-mini-4k-instruct.

Method Accuracy

Pre-trained 62.01
Full 73.16
LoRA 75.66
+PACE 78.77
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Conclusions

Conclusions:
PACE perturbs adapter features and enforces consistency regularization across
perturbations.
PACE regularizes gradients for improved generalization and reduces
fine-tuned pre-trained distance to retain knowledge.
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