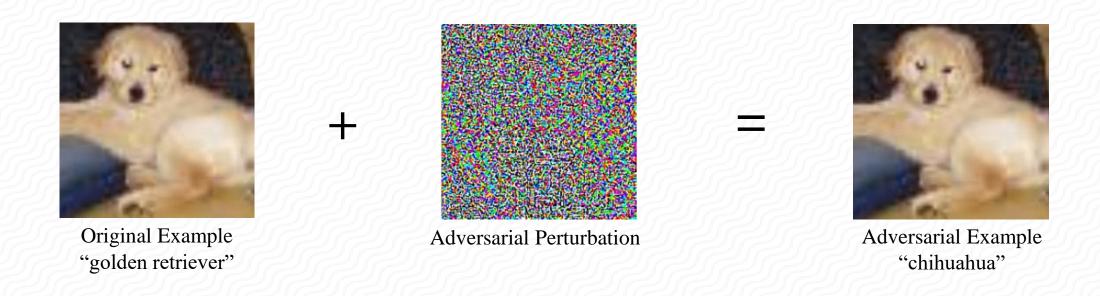
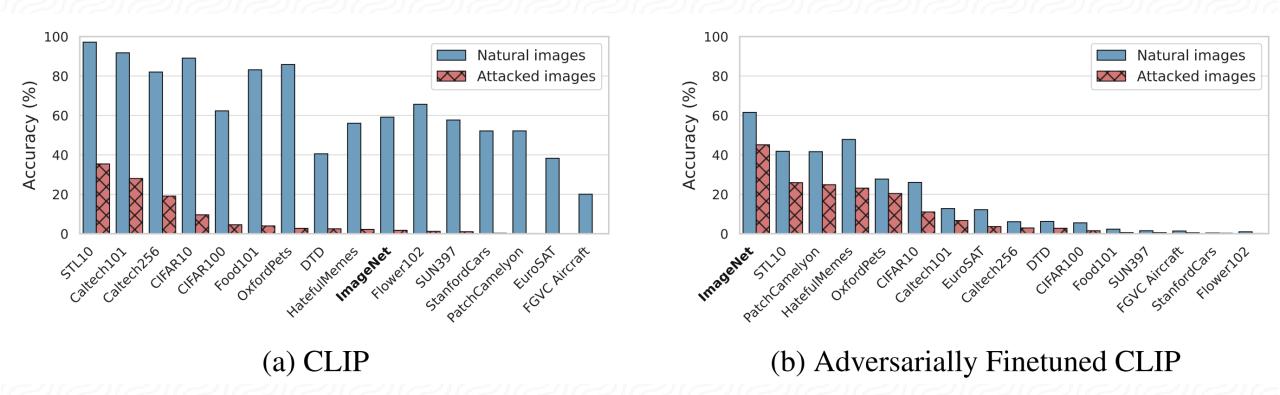


Text-Guided Attention is All You Need for Zero-Shot Robustness in Vision-Language Models

Lu Yu Haiyang Zhang Changsheng Xu



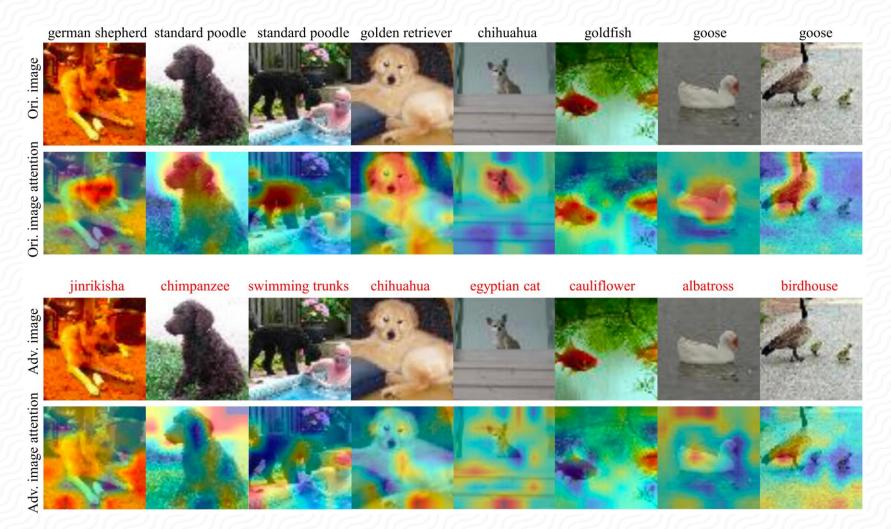
Adversarial Attack

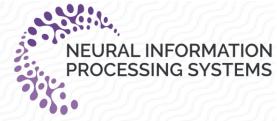

Deep neural networks have been found to be vulnerable to adversarial examples.

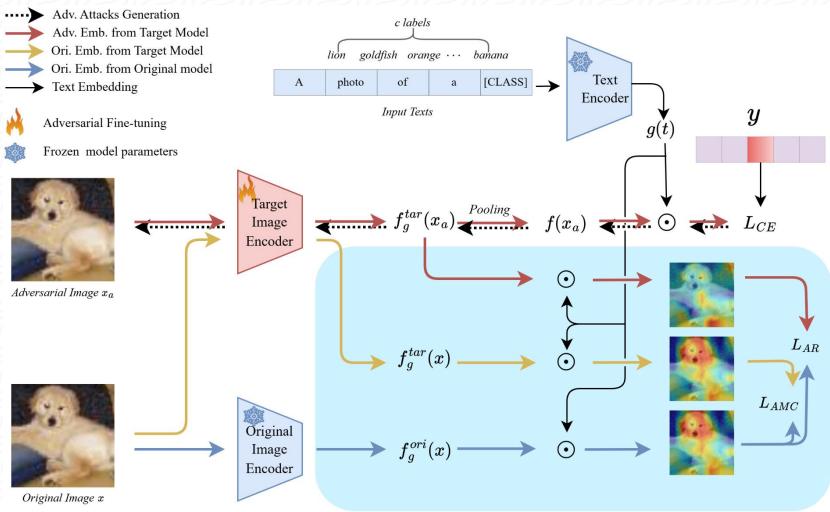
Adversarial Attack

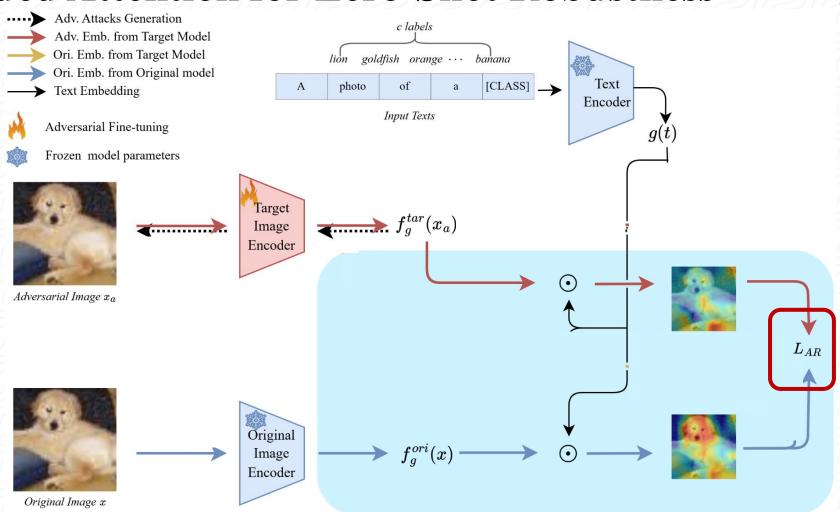


Imperceptible adversarial perturbations can significantly reduce CLIP's performance on new tasks.

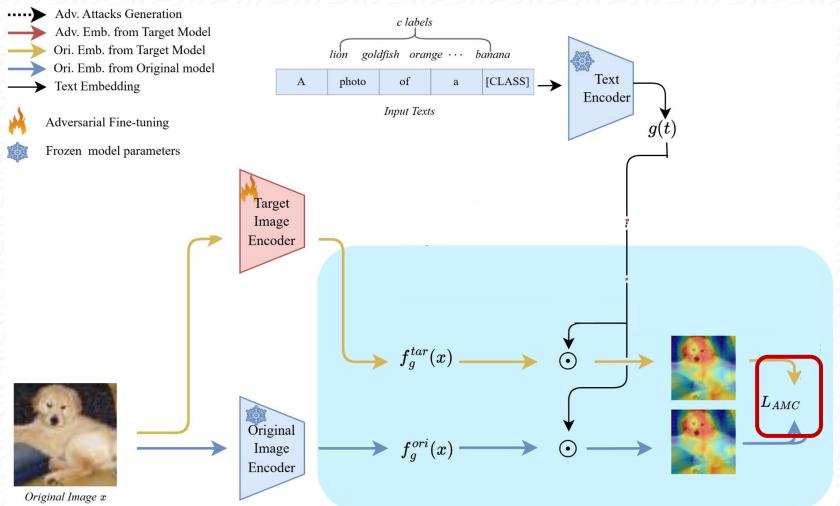



*Mao, C., Geng, S., Yang, J., Wang, X. and Vondrick, C., Understanding Zero-shot Adversarial Robustness for Large-Scale Models. In *The Eleventh International Conference on Learning Representations*, 2023.


Interpretation of Adversarial Attacks

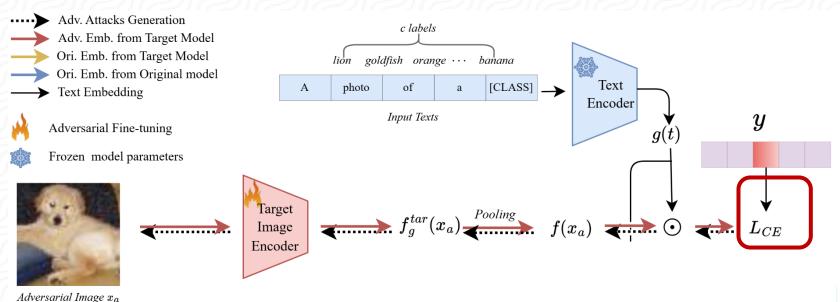


 $A(x) = f_q(x) \cdot g(t)^{\mathsf{T}}$



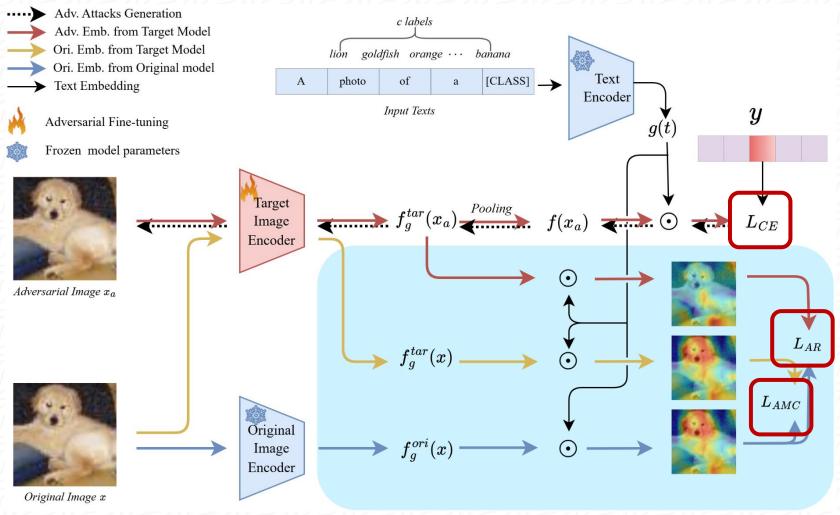
> Attention Refinement Module:

$$L_{AR} = \frac{1}{N} \cdot \sum_{i=0}^{N} \|A(x_a^i)_{tar} - A(x^i)_{ori}\|_{2}$$



> Attention-based Model Constraint Module:

$$L_{AMC} = \frac{1}{N} \cdot \sum_{i=0}^{N} ||A(x^{i})_{tar} - A(x^{i})_{ori}||_{2}$$



Cross-Entropy Loss:

$$L(x,t,y) = -\mathbf{E}_{i,j} \left[y_{ij} \log \frac{\exp(\cos(f(x)_i, g(t)_j)/\tau)}{\sum_k \exp(\cos(f(x)_i, g(t)_k)/\tau)} \right]$$

Experiments: Main Results

Table 1: Zero-shot robust accuracy on images attacked with 100 steps of PGD [36]. We performed several different methods on Tiny-ImageNet and evaluated across 16 datasets. The optimal accuracy is highlighted in **bold**, while the second-best accuracy is <u>underlined</u>. The values in parentheses represent the standard deviation.

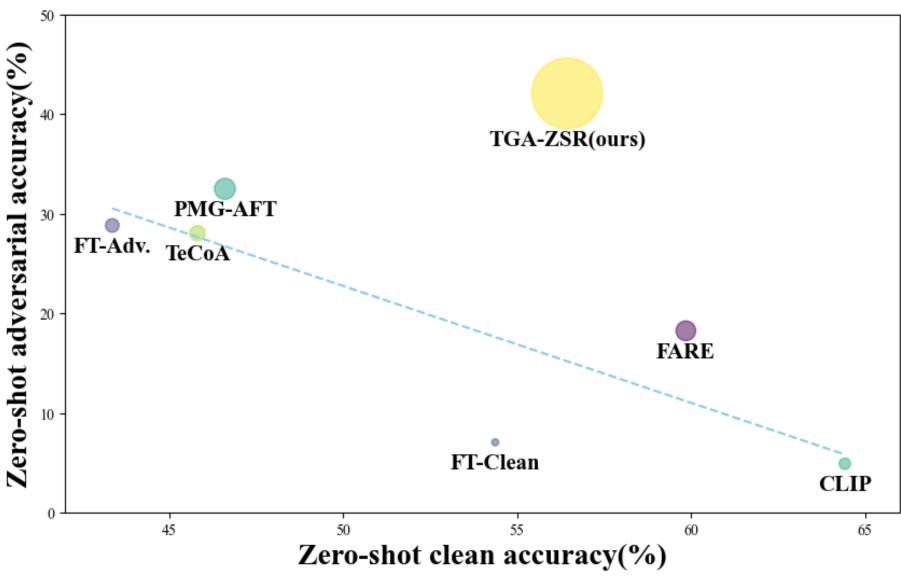

Methods	Tiny-ImageNet	CIFAR-10	CIFAR.100	STL-I0	SUN397	Food101	$O_X f_0 r dpet_S$	Flowers102	a_{LQ}	EuroSAT	FGVCAireraft	ImageNet	Caltech.I0I	Cattech-256	StanfordCar _S	$^{PC_{AM}}$	Average
CLIP [48]	0.88	2.42	0.26	26.11	1.00	6.60	3.84	1.19	2.02	0.05	0.00	1.24	19.88	12.60	0.20	0.11	4.90
FT-Clean	13.55	19.92	4.94	40.00	0.82	0.64	2.40	0.68	2.66	0.05	0.03	1.08	14.95	9.69	0.09	1.32	7.05
FT-Adv.	51.59	38.58	21.28	69.55	17.60	12.55	34.97	19.92	15.90	11.95	1.83	17.26	50.73	40.18	8.42	48.88	28.83
TeCoA [38]	37.57	30.30	17.53	67.19	19.70	14.76	36.44	22.46	17.45	12.14	1.62	18.18	55.86	41.88	8.49	47.39	28.06
FARE[51]	23.88	21.25	10.72	59.59	8.30	10.97	24.56	15.48	10.96	0.14	0.84	10.54	45.96	34.35	4.38	10.17	18.25
PMG-AFT[59]	47.11	46.01	25.83	74.51	22.21	19.58	41.62	23.45	15.05	12.54	1.98	21.43	62.42	45.99	11.72	48.64	32.51
TGA-ZSR (ours)	63.95	61.45	35.27	84.22	33.22	33.97	57.75	34.55	22.08	14.27	4.75	28.74	70.97	60.06	20.40	47.76	42.09
	(± 0.11)	(± 0.67)	(± 0.07)	(± 0.21)	(± 0.39)	(± 0.20)	(± 0.76)	(± 0.35)	(± 0.16)	(± 0.26)	(± 0.27)	(± 0.11)	(± 0.42)	(± 0.46)	(± 0.68)	(± 0.35)	(± 0.12)

Table 2: Zero-shot clean accuracy. We performed several different methods on Tiny-ImageNet and evaluated across 16 datasets. The values in parentheses represent the standard deviation.

Methods	Tiny-ImageNet	CIEAR-10	CIEAR.100	STL-I0	SUN397	F_{00dI0I}	$O_{Mordpets}$	Flowers102	a_{LQ}	EuroSAT	FGVCAircraft	ImageNet	Caltech-I0I	Caltech-256	StanfordCars	$^{PC_{AM}}$	Average
CLIP [48]	57.26	88.06	60.45	97.04	57.26	83.89	87.41	65.47	40.69	42.59	20.25	59.15	85.34	81.73	52.02	52.09	64.42
FT-Clean	79.04	84.55	54.25	93.78	46.80	47.10	80.98	46.43	30.32	24.39	9.30	44.40	78.69	70.81	31.15	47.89	54.37
FT-Adv.	73.83	68.96	39.69	86.89	33.37	27.74	60.10	33.45	23.14	16.49	4.86	32.06	67.41	57.72	18.11	49.91	43.36
TeCoA [38]	63.97	66.14	36.74	87.24	40.54	35.11	66.15	38.75	25.53	17.13	6.75	37.09	74.63	62.50	24.65	50.01	45.81
FARE[51]	77.54	87.58	62.80	94.33	49.91	70.02	81.47	57.10	36.33	22.69	14.19	51.78	84.04	77.50	44.35	46.07	59.85
PMG-AFT[59]	67.11	74.62	44.68	88.85	37.42	37.47	66.34	35.66	21.17	17.76	4.71	35.93	76.70	61.96	25.21	49.99	46.60
TGA-ZSR(ours)	75.72	86.46	56.52	93.48	51.99	57.59	77.32	48.08	29.06	24.24	11.93	48.04	80.70	74.74	36.62	49.58	56.44
TGA-ZSK(Ours)	(± 0.12)	(± 0.26)	(± 0.35)	(± 0.19)	(± 0.25)	(± 0.34)	(± 0.30)	(± 0.37)	(± 0.35)	(± 0.49)	(± 0.27)	(± 0.06)	(± 0.09)	(± 0.18)	(± 1.03)	(± 0.17)	(± 0.08)

Experiments: Main Results

Experiments: Comparison to Vision-based Attention

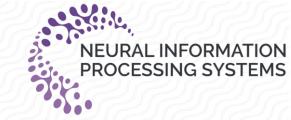


Table 4: Comparison of vision-based attention and our text-guided attention. We evaluate the state-of-the-art method PMG-AFT alongside our pipeline, incorporating two different types of attention mechanisms on Tiny-ImageNet and evaluating performance across 16 datasets.

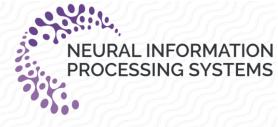
Test	Methods	Tiny-ImageNet	CIFAR-10	CIFAR-100	STL-I0	SUN397	$F_{00}dI_{0I}$	O_{X} for dpets	Flowers102	q_{LQ}	EuroSAT	FGVC,Aircraft	ImageNet	Caltech-101	Caltech-256	StanfordCar _s	$^{PC_{4M}}$	Average
Robust	PMG-AFT[55] Vision-based	47.11 52.81	46.01 40.46	25.83 22.66	74.51 70.26	22.21 19.50	19.58 13.74	41.62 37.67	23.45 19.78	15.05 16.97	12.54 11.79	1.98 2.64	21.43 18.08	62.42 55.64	45.99 42.45	11.72 8.88	48.64 38.11	32.51 29.47
	TGA-ZSR (ours)	63.97	61.82	35.25	83.99	32.78	34.13	56.91	34.20	21.92	14.20	4.44	28.62	70.53	59.70	21.15	47.75	41.96
~	PMG-AFT[55]	67.11	74.62	44.68	88.85	37.42	37.47	66.34	35.66	21.17	17.76	4.71	35.93	76.70	61.96	25.21	49.99	46.60
Clean	Vision-based TGA-ZSR (ours)	74.31 76.85	70.77 86.23	41.03 56.55	87.24 93.28	36.91 51.71	30.07 57.72	62.52 77.08	33.89 48.32	24.10 29.15	16.26 23.99	5.70 12.03	33.59 48.10	72.35 80.82	59.75 74.58	20.50 37.72	51.29 49.60	45.02 56.48
	TGA-ZSK (ours)	/0.85	80.23	30.33	93.28	51./1	51.12	77.08	40.32	29.15	23.99	12.03	46.10	00.82	/4.58	31.12	49.00	50.48

Experiments: More Attack

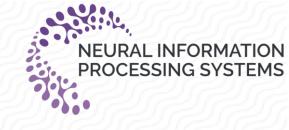
Table 3: Zero-shot robust accuracy on images attacked with ε of 1/255 of AutoAttack [7]. We performed several different methods on Tiny-ImageNet and evaluated on 16 datasets.

Methods	Tiny-ImageNet	CIFAR-10	CIFAR-100	STL-I0	SUN397	F_{000I0I}	Oxfordpets	Howers102	q_{LQ}	EuroSAT	RGVCAircraft	ImageNet	Caltech-101	Caltech-256	$Stanford_{Car_S}$	PCAM	Average
CLIP [48]	0.02	0.01	0.08	0.03	0.04	0.01	0.00	0.03	0.16	0.12	0.06	0.04	0.43	0.10	0.11	0.22	0.09
FT-Clean	0.08	0.03	0.01	0.91	0.09	0.04	0.06	0.03	0.48	0.02	0.03	0.12	1.38	0.66	0.03	0.03	0.25
FT-Adv.	50.48	37.55	20.39	69.14	16.25	11.23	33.91	18.54	19.95	11.59	1.65	16.21	49.90	39.24	7.57	48.84	28.28
TeCoA [38]	35.03	28.18	16.09	66.08	17.41	13.05	34.81	20.80	15.37	11.40	1.32	16.32	54.54	40.15	7.15	47.12	26.55
FARE [51]	28.59	23.37	13.58	60.70	9.72	13.88	27.72	15.48	9.15	0.25	0.87	12.07	47.45	36.68	6.77	10.23	19.78
PMG-AFT [59]	44.26	44.12	23.66	73.90	19.63	17.25	39.25	20.87	13.72	11.99	1.68	19.17	60.57	44.25	9.59	48.53	30.78
TGA-ZSR (ours)	49.45	40.53	22.38	72.06	20.36	15.58	40.31	21.43	17.13	11.19	2.64	19.28	<u>57.16</u>	45.68	10.47	48.03	30.86

Table 4: Zero-shot robust accuracy across 16 datasets with CW attack [4]. The optimal accuracy is highlighted in **bold**.


Methods	Tiny-ImageNet	CIFAR-10	CIFAR-100	STL-10	SUN397	Food 101	Oxtordpets	Flowers102	a_{LQ}	EuroSAT	FGVCAircraft	ImageVer	Caltech-101	Cattech-256	StanfordCars	$^{PC_{4M}}$	Average
CLIP [48]	0.21	0.36	0.10	10.59	1.16	0.82	1.23	1.09	2.18	0.01	0.00	1.14	13.50	7.36	2.36	0.07	3.64
PMG-AFT[59]	44.59	44.86	24.15	74.11	19.99	17.33	39.88	20.95	13.51	12.09	1.47	19.51	60.99	44.46	10.57	48.59	31.07
TGA-ZSR(ours)	63.85	60.50	34.62	84.11	22.03	33.28	58.33	32.95	21.22	13.89	4.56	20.42	70.34	59.73	20.20	48.02	40.50

Experiments: Comparison to Computational Overhead PROCESSING SYSTEMS


Table 8: Comparison of memory usage, training time, and test time.

Methods	Train memory usage	Train time (per epoch / batch)	Test time (per batch)
CLIP [48]	0Mb	0s / 0s	21s
TeCoA [38]	12873Mb	512s / 0.65s	21s
PMG-AFT[59]	18449Mb	828s / 1.06s	21s
TGA-ZSR (ours)	21227Mb	885s / 1.13s	21s

Conclusions

In this paper, we discovered that adversarial attacks lead shift of text-guided attention. Building on this observation, we introduce a text-guided approach, TGA-ZSR, which incorporates two key components to preform adversarial fine-tuning and constrain the model. This strategy prevents model drift while enhancing model robustness.

Thank You!

luyu@email.tjut.edu.cn zshy@stud.tjut.edu.cn csxu@nlpr.ia.ac.cn

https://github.com/zhyblue424/TGA-ZSR