

Learning Truncated Causal History Model for Video Restoration

[▲] Amirhosein Ghasemabadi^{1,2}, ◆ Muhammad Kamran Janjua², Mohammad Salameh², Di Niu¹

- **ECE Department, University of Alberta**
- 2 Huawei Technologies, Canada
- \spadesuit indicates equal contribution

Introduction to Video Restoration

'If you want to understand today, you have to search yesterday.' – Pearl S. Buck

Video Restoration:

- Aims to improve low-quality videos affected by factors such as:
	- ❖ Motion Blur ❖ Weather ❖ Noise
	- ❖ Camera Sensors or Acquisition Procedure.

Challenges:

- 1. Effective information fusion across multiple frames
- 2. Handling non-uniform motion between frames.

Limitations of Existing Methods

Parallel Methods

- Process multiple frames simultaneously
- Multiple branches for feature extraction and reconstruction of each frame or set of frames
- Mix features mid-process to improve context
- High memory and computational cost

Recurrent Methods

- Process frames sequentially
- Some designs use auto-regression, feeding the output from the previous timestep as input along with the current degraded frame
- Lower memory use but prone to error accumulation
- Slower training due to limited parallelization

Figure 1: Parallel vs Recurrent Methods.

Overview

TURTLE:

• A video restoration framework designed to improve compute efficiency and quality.

Key Features

Online Video Processing:

• TURTLE processes each frame independently within the encoder.

Truncated Causal History:

• Uses a limited set of past frames to save memory.

Causal History Model (CHM) :

- Models the trajectory by summarizing the evolving frames into history states.
- Borrows information from the history states to compensate the input frame for motion and re-weights the entire trajectory to accentuate necessary information.

Tasks:

• TURTLE achieves state-of-the-art results on seven restoration tasks, including desnowing, deraining, super-resolution, and deblurring.

Architecture details

Encoder:

Figure 3: Causal History Model Visualized.

• Processes each frame independently, without relying on neighboring frames in the video.

Decoder:

• Uses aligned features from previously restored frames through the **Causal History Model (CHM)**.

CHM Function:

- **History Summarization:** CHM extends the state-space modeling paradigm to video processing and maintains an evolving state that summarizes the history of the frame.
- **Motion Compensation:** CHM aligns history states with the input frame through attention mechanism limited to topk most similar regions in the history.
- **Feature Re-weighting:** Prioritizes relevant features over time by re-weighting the entire trajectory, and the irrelevant information is suppressed.

Is CHM Necessary?

Ground Truth

Figure 4: Is CHM Necessary?

Technical Features - 1

Figure 5: Stateless vs Stateful Configuration.

Configurable Mode:

• TURTLE can either be stateful or stateless.

Training:

• In training, TURTLE uses parallelism by dividing videos into clips, and minimizes recurrence.

Inference:

• In inference, TURTLE resorts to stateful configuration and implicitly maintains the entire trajectory to leverage longer temporal context for restoration.

Technical Features - 2

Figure 6: Run-Time and Memory Profile of TURTLE.

Efficiency:

- TURTLE reuses features from a limited set of previous frames, trading off compute for memory.
- Limits the motion compensation to *topk* most similar regions in the history.

Performance:

• Can process 1080p videos on a single consumer-grade 32 GB GPU, while many state-of-the-art methods encounter Out-of-Memory errors.

Table 1: Night Video Deraining Results.

Table 2: Video Desnowing Results.

Table 6: Blind Video Denoising Results. Quantitative results on blind video denoising task in terms of distortion metrics. PSNR and SSIM, on two datasets DAVIS [48], and Set8 [61].

Table 3: Real-World Video **Deblurring.** Quantitative results (PSNR, and SSIM) on the 3ms-24ms BSD dataset $[83]$ comparing stateof-the-art methods.

Table 4: Synthetic Video Deblurring Results. Quantitative results (PSNR, and SSIM) on the GoPro dataset [41] comparing state-of-the-art methods.

Table 5: Video Raindrop and Rain

Quantitative re- Table 7: $4 \times$ Video Super Resolution. Quantita **Streak Removal.** sults (PSNR, and SSIM) on the VRDS tive results on video super resolution task in term: dataset [71] comparing state-of-the-art of distortion metrics, PSNR and SSIM. methods.

Figure 7: TURTLE Results on Video Restoration Tasks

Method

VRT [34]

TTVSR

ViMPNet

TURTLE

Visual Results -1

Figure 8: Synthetic Video Deblurring Results.

Figure 9: Video Desnowing Results.

Visual Results -2

Figure 10: Video RainStreak and Raindrop Removal Results

Figure 11: Real-World Restoration Results (videos taken from a free videos website)

Any Questions?

ghasemab@ualberta.ca / mjanjua@ualberta.ca

https://github.com/Ascend-Research/Turtle

https://kjanjua26.github.io/turtle

Thanks!