



### Learning Truncated Causal History Model for Video Restoration

Amirhosein Ghasemabadi<sup>1,2</sup>, Muhammad Kamran Janjua<sup>2</sup>, Mohammad Salameh<sup>2</sup>, Di Niu<sup>1</sup>

- 1 ECE Department, University of Alberta
- 2 Huawei Technologies, Canada
- indicates equal contribution











## **Introduction to Video Restoration**

'If you want to understand today, you have to search yesterday.' - Pearl S. Buck

### **Video Restoration:**

- Aims to improve low-quality videos affected by factors such as:
  - ✤ Motion Blur ❖ Weather ❖ Noise
  - Camera Sensors or Acquisition Procedure.

### Challenges:

- 1. Effective information fusion across multiple frames
- 2. Handling non-uniform motion between frames.

# Limitations of Existing Methods

#### **Parallel Methods**

- Process multiple frames simultaneously
- Multiple branches for feature extraction and reconstruction of each frame or set of frames
- Mix features mid-process to improve context
- High memory and computational cost

### **Recurrent Methods**

- Process frames sequentially
- Some designs use auto-regression, feeding the output from the previous timestep as input along with the current degraded frame
- Lower memory use but prone to error accumulation
- Slower training due to limited parallelization



Figure 1: Parallel vs Recurrent Methods.

### **Overview**

### TURTLE:

• A video restoration framework designed to improve compute efficiency and quality.

### **Key Features**

#### **Online Video Processing:**

TURTLE processes each frame independently within the encoder.

#### Truncated Causal History:

· Uses a limited set of past frames to save memory.

### Causal History Model (CHM) :

- Models the trajectory by summarizing the evolving frames into history states.
- Borrows information from the history states to compensate the input frame for motion and re-weights the entire trajectory to accentuate necessary information.

#### Tasks:

• TURTLE achieves state-of-the-art results on seven restoration tasks, including desnowing, deraining, super-resolution, and deblurring.



## **Architecture details**



Encoder:

- Figure 3: Causal History Model Visualized.
- Processes each frame independently, without relying on neighboring frames in the video.

#### Decoder:

• Uses aligned features from previously restored frames through the Causal History Model (CHM).

### **CHM Function:**

- **History Summarization:** CHM extends the state-space modeling paradigm to video processing and maintains an evolving state that summarizes the history of the frame.
- **Motion Compensation:** CHM aligns history states with the input frame through attention mechanism limited to topk most similar regions in the history.
- Feature Re-weighting: Prioritizes relevant features over time by re-weighting the entire trajectory, and the irrelevant information is suppressed.

# Is CHM Necessary?



Ground Truth

Figure 4: Is CHM Necessary?

### **Technical Features - 1**



Figure 5: Stateless vs Stateful Configuration.

### **Configurable Mode:**

• TURTLE can either be stateful or stateless.

### Training:

• In training, TURTLE uses parallelism by dividing videos into clips, and minimizes recurrence.

#### Inference:

 In inference, TURTLE resorts to stateful configuration and implicitly maintains the entire trajectory to leverage longer temporal context for restoration.

### **Technical Features - 2**



Figure 6: Run-Time and Memory Profile of TURTLE.

### Efficiency:

- TURTLE reuses features from a limited set of previous frames, trading off compute for memory.
- Limits the motion compensation to *topk* most similar regions in the history.

### Performance:

 Can process 1080p videos on a single consumer-grade 32 GB GPU, while many state-of-the-art methods encounter Out-of-Memory errors.



Table 1: Night Video Deraining Results.

#### Table 2: Video Desnowing Results.

| Method               | <b>PSNR</b> ↑ | SSIM   |  |
|----------------------|---------------|--------|--|
| FDM [22]             | 23.49         | 0.7657 |  |
| DSTFM [46]           | 17.82         | 0.6486 |  |
| WeatherDiff [43]     | 20.98         | 0.6697 |  |
| RMFD [75]            | 16.18         | 0.6402 |  |
| DLF [74]             | 15.17         | 0.6307 |  |
| HRIR [31]            | 16.83         | 0.6481 |  |
| MetaRain (Meta) [47] | 23.49         | 0.7171 |  |
| MetaRain (Scrt) [47] | 22.21         | 0.6723 |  |
| NightRain [35]       | 26.73         | 0.8647 |  |
| TURTLE               | 29.26         | 0.9250 |  |

| Method            | <b>PSNR</b> ↑ | SSIM   |
|-------------------|---------------|--------|
| TransWeather [65] | 23.11         | 0.8543 |
| SnowFormer [12]   | 24.01         | 0.8939 |
| S2VD [78]         | 22.95         | 0.8590 |
| RDDNet [68]       | 22.97         | 0.8742 |
| EDVR [69]         | 17.93         | 0.5790 |
| BasicVSR [6]      | 22.46         | 0.8473 |
| IconVSR [6]       | 22.35         | 0.8482 |
| BasicVSR++ [7]    | 22.64         | 0.8618 |
| RVRT [33]         | 20.90         | 0.7974 |
| SVDNet [10]       | 25.06         | 0.9210 |
| TURTLE            | 26.02         | 0.9230 |

Table 6: **Blind Video Denoising Results.** Quantitative results on blind video denoising task in terms of distortion metrics, PSNR and SSIM, on two datasets DAVIS [48], and Set8 [61].

| Methods         | DAVIS         |               | Set8        |               |
|-----------------|---------------|---------------|-------------|---------------|
|                 | $\sigma = 30$ | $\sigma = 50$ | $\sigma=30$ | $\sigma = 50$ |
| VLNB [1]        | 33.73         | 31.13         | 31.74       | 29.24         |
| FastDVDNet [62] | 34.04         | 31.86         | 31.60       | 29.42         |
| DVDNet [61]     | 34.08         | 31.85         | 31.79       | 29.56         |
| UDVD [55]       | 33.92         | 31.70         | 32.01       | 29.89         |
| ReMoNet [72]    | 33.93         | 31.65         | 31.59       | 29.44         |
| BSVD-32 [49]    | 34.46         | 32.25         | 31.71       | 29.62         |
| BSVD-64 [49]    | 34.91         | 32.72         | 32.02       | 29.95         |
| TURTLE          | 34.48         | 32.38         | 32.22       | 30.29         |

Table 3: **Real-World Video Deblurring.** Quantitative results (PSNR, and SSIM) on the 3ms-24ms BSD dataset [83] comparing stateof-the-art methods. Table 4: **Synthetic Video Deblurring Results.** Quantitative results (PSNR, and SSIM) on the GoPro dataset [41] comparing state-of-the-art methods.

#### Table 5: Video Raindrop and Rain

**Streak Removal.** Quantitative re- Table 7:  $4 \times$  **Video Super Resolution.** Quantitative results (PSNR, and SSIM) on the VRDS tive results on video super resolution task in terms dataset [71] comparing state-of-the-art of distortion metrics, PSNR and SSIM. methods.

**SSIM**<sup>↑</sup>

0.6630

0.6363

0.8990

0.8856

0.8998

0.8857

0.9096

0.9171

0.9283

0.9590

| Method        | <b>PSNR</b> ↑ | <b>SSIM</b> ↑ | Method         | <b>PSNR</b> ↑ | SSI |
|---------------|---------------|---------------|----------------|---------------|-----|
| STRCNN [24]   | 29.42         | 0.893         | IFI-RNN [42]   | 31.05         | 0.9 |
| DBN [58]      | 31.21         | 0.922         | ESTRNN [82]    | 31.07         | 0.9 |
| SRN [60]      | 28.92         | 0.882         | EDVR [69]      | 31.54         | 0.9 |
| IFI-RNN [42]  | 30.89         | 0.917         | TSP [44]       | 31.67         | 0.9 |
| STFAN [86]    | 29.47         | 0.872         | GSTA [59]      | 32.10         | 0.9 |
| CDVD-TSP [44] | 31.58         | 0.926         | FGST [36]      | 32.90         | 0.9 |
| PVDNet [57]   | 31.35         | 0.923         | BasicVSR++ [7] | 34.01         | 0.9 |
| ESTRNN [83]   | 31.39         | 0.926         | DSTNet [45]    | 34.16         | 0.9 |
| TURTLE        | 33.58         | 0.954         | TURTLE         | 34.50         | 0.9 |

|               | Method                                                                                                          | <b>PSNR</b> ↑                                                                                                                                                                        |
|---------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>SSIM</b> ↑ | S2VD [78]                                                                                                       | 18.95                                                                                                                                                                                |
| 0.9110        | EDVR [69]                                                                                                       | 19.19                                                                                                                                                                                |
| 0.9023        | BasicVSR [6]                                                                                                    | 28.35                                                                                                                                                                                |
| 0.9260        | VRT [34]                                                                                                        | 27.77                                                                                                                                                                                |
| 0.9280        | TTVSR [37]                                                                                                      | 28.05                                                                                                                                                                                |
| 0.9600        | RVRT [33]                                                                                                       | 28.24                                                                                                                                                                                |
| 0.9610        | RDDNet [68]                                                                                                     | 28.38                                                                                                                                                                                |
| 0.9520        | BasicVSR++ [7]                                                                                                  | 29.75                                                                                                                                                                                |
| 0.9679        | ViMPNet [71]                                                                                                    | 31.02                                                                                                                                                                                |
| 0.9720        | TURTLE                                                                                                          | 32.01                                                                                                                                                                                |
|               | $\begin{array}{c} 0.9110\\ 0.9023\\ 0.9260\\ 0.9280\\ 0.9600\\ 0.9610\\ 0.9520\\ \underline{0.9679}\end{array}$ | SSIM↑ S2VD [78]   0.9110 EDVR [69]   0.9023 BasicVSR [6]   0.9260 VRT [34]   0.9280 TTVSR [37]   0.9600 RVRT [33]   0.9610 RDDNet [68]   0.9520 BasicVSR++ [7]   0.9679 ViMPNet [71] |

| Method         | <b>PSNR</b> ↑ | <b>SSIM</b> ↑ |
|----------------|---------------|---------------|
| TDAN [63]      | 23.07         | 0.7492        |
| EDVR [69]      | 23.51         | 0.7611        |
| BasicVSR [6]   | 23.38         | 0.7594        |
| MANA [76]      | 23.15         | 0.7513        |
| TTVSR [37]     | 23.60         | 0.7686        |
| BasicVSR++ [7] | 23.70         | 0.7713        |
| EAVSR [67]     | 23.61         | 0.7618        |
| EAVSR+ [67]    | 23.94         | 0.7726        |
| TURTLE         | 25.30         | 0.8272        |

Figure 7: TURTLE Results on Video Restoration Tasks

### **Visual Results -1**



Figure 8: Synthetic Video Deblurring Results.



Figure 9: Video Desnowing Results.

### Visual Results -2



#### Figure 10: Video RainStreak and Raindrop Removal Results



Figure 11: Real-World Restoration Results (videos taken from a free videos website)

### Any Questions?



ghasemab@ualberta.ca / mjanjua@ualberta.ca

https://github.com/Ascend-Research/Turtle

https://kjanjua26.github.io/turtle

# Thanks!