

Are Multiple Instance Learning Algorithms Learnable for Instances?

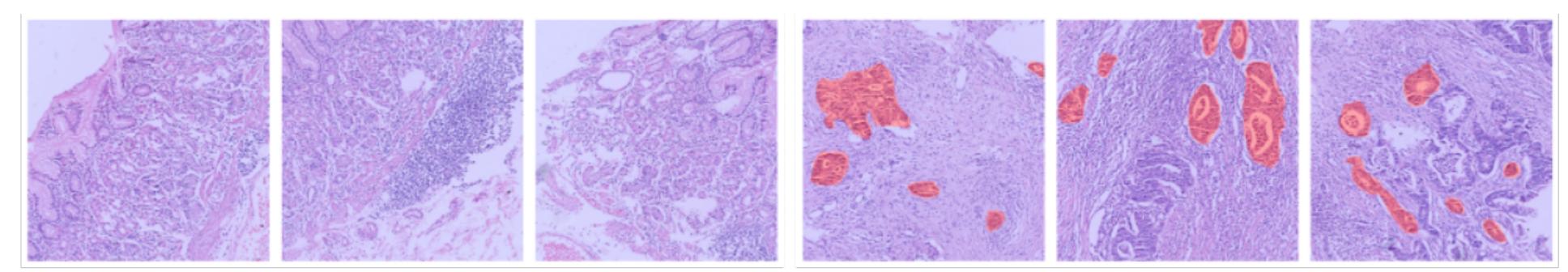
Jaeseok Jang and HYUK-YOON KWON* Big Data-Driven AI Laboratory (<u>https://bigdata.seoultech.ac.kr/</u>)

Graduate School of Data Science, Seoul National University of Science and Technology {jangjs1027, hyukyoon.kwon}@seoultech.ac.kr

LT	ECH

I. Introduction

- Multiple Instance Learning (MIL)
 - \bullet instance levels.
 - lacksquare
 - level, rather than the instance level.



Learns from labels assigned to bags and performs predictions at both the bag and

Ex) Video-Snippets, Review-Words, Image-Patch, Sliding window-Time point

Most research primarily focuses on enhancing prediction performance at the bag

Figure 1. The data structure consisting of multi-instances (Blue: Negative, Red: Positive)

II. Problem Setting

Definition 4. PAC Learnability of Bag

 $\mathbb{P}_{S \sim D_{XY}^m}[|R_{bag}(A(S)) -$

Definition 5. PAC Learnability of Instance

$$\mathbb{P}_{S_{inst_i} \sim D^m_{X_{inst_i}Y}}[|R_{inst_i}(A(S_{inst_i})) - \inf_{h \in \mathcal{H}_{inst_i}}R_{inst_i}(h)| \le \epsilon] \ge 1 - \delta$$

Definition 6. If the MIL algorithm satisfies Condition 2, it is learnable for instances.

Condition 2. The Deep MIL algorithm A must exhibit equivalent PAC learnability for bags and instances:

$$\mathbb{P}\left[\left|R_{bag}(A(S)) - \inf_{h \in \mathcal{H}_{bag}} R_{bag}(h)\right| \le \epsilon \wedge \bigcap_{i=1}^{n} \left|R_{insti}(A(S_{inst_i})) - \inf_{h \in \mathcal{H}_{inst_i}} R_{inst_i}(h)\right| \le \epsilon\right] \ge 1 - \delta$$

$$\inf_{h \in \mathcal{H}_{bag}} R_{bag}(h) \mid \leq \epsilon] \geq 1 - \delta$$

II. Problem Setting

 $\mathscr{H}_{inst_i} \subset \{h_{inst_i} : X \to Y\}.$

$$\mathbb{P}\left[\bigcup_{i=1}^{n} |R_{inst_i}(A(S_{inst_i})) - \inf_{h \in \mathcal{H}_{inst_i}} R_{inst_i}(h)| > \epsilon\right] > \delta$$

and <u>bag hypothesis space</u> $\mathscr{H}_{bag} \subset \{h_{bag} : X \to Y\}$:

$$\mathbb{P}\left[\left|R_{bag}(A(S)) - \inf_{h \in \mathcal{H}_{bag}} R_{bag}(h)\right| > \epsilon\right] > \delta$$

Assumption 1. The MIL algorithm is PAC learnable for bags.

• **Theorem 1.** If MIL algorithm A satisfies <u>Condition 1</u>, then this algorithm is <u>not PAC</u> <u>learnable</u> for any instance domain space $\mathscr{D}_{X_{inst}}$ and instance hypothesis space

• Condition 1. The MIL algorithm A is not PAC learnable for the given domain space \mathscr{D}_{XY}

III.I. Summary of Framework

Priori Learnability Theorems for Instances

Theorem 1: Relationship between learnability for Bags and learnability for Instances **Consequence:** If an MIL algorithm is not PAC learnable for bags, it cannot be PAC learnable for instances.

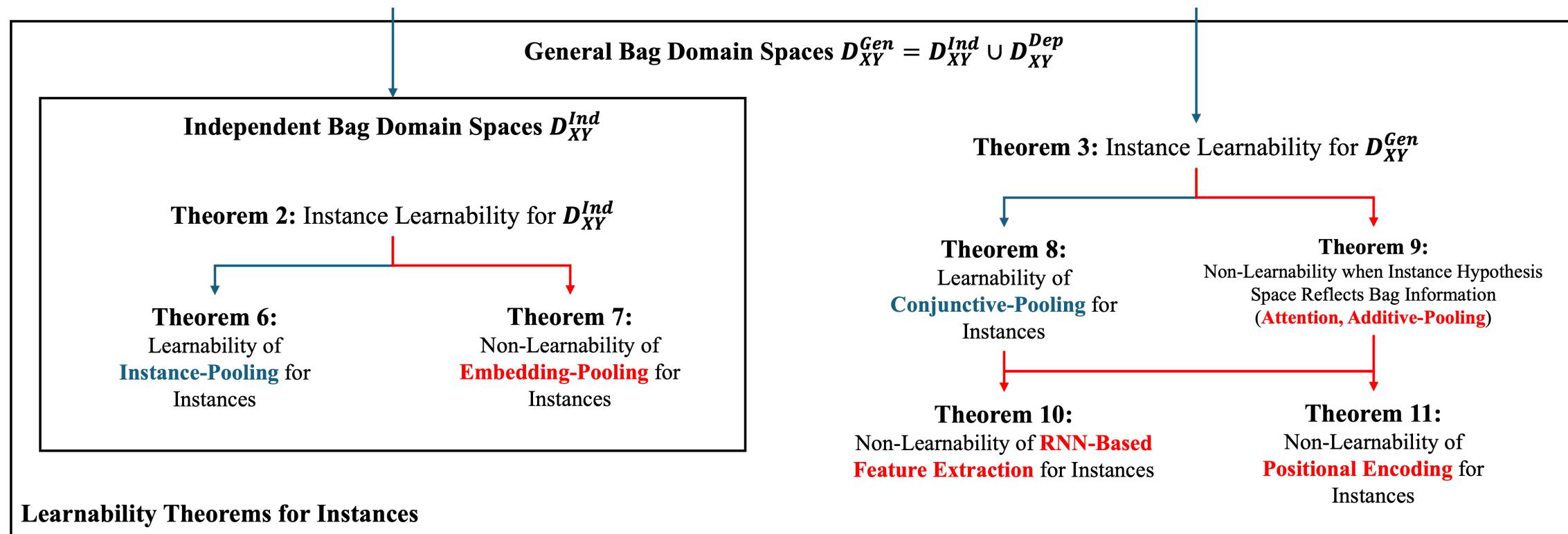
Assumption 1: The MIL algorithm is PAC learnable for bags

Theorem 4: PAC Learnability for Bags in D_{XY}^{Ind} Consequence: All MIL pooling techniques are PAC trainable on D_{XY}^{Ind} to Bag. (Instance, Embedding, Attention, Additive, Conjunctive-Pooling) Example: In drug activity prediction, MIL analyzes various independent chemical structures of a drug candidate to predict whether the candidate is active against a disease. **Theorem 5:** PAC Learnability for Bags in D_{XY}^{Gen}

Consequence: For MIL algorithms to be PAC learnable in D_{XY}^{Gen} , the use of an attention mechanism is necessary. (Attention, Additive, Conjunctive-Pooling)

Example: In **review-sentence analysis**, MIL considers the relationships between sentences within a review to predict the overall sentiment of the review.

III.I. Summary of Framework



III. Proposed Theoretical Framework III.II. PAC Learnability for Independent Bag Domain Spaces

• Definition 7. Independent Bag Domain Space (\mathscr{D}_{XY}^{Ind})

 $D_{XY}^{Ind} := \bigcup_{i=1}^{i=1}$

• **Theorem 2.** If a MIL algorithm satisfies Condition 4 in \mathscr{D}_{XY}^{Ind} , it is learnable for instances.

sum of the individual risks of the optimal hypotheses within D_{XY}^{Ind} :

inf $R_{\mathcal{N}_{i}}$ $h \in \mathcal{H}$

$$\int_{=1}^{N} D_{X_{inst_i}Y} \in \mathscr{D}_{XY}^{Ind}$$

Condition 4. The risk of the optimal hypothesis for D_{XY}^{Ind} must ensure that it equals the

$$\sum_{Y}^{nd} = \sum_{i=1}^{N} \inf R_{inst_i}$$

III. Proposed Theoretical Framework III.III. PAC Learnability for General Bag Domain Spaces

Definition 8. General Bag Domain Spa

$$D_{XY}^{Gen} = \sum_{i=1}^{N} \alpha_i D_{X_{inst_i}Y} \in \mathcal{D}_{XY}^{Gen}$$

Condition 7. The risk of the optimal hypothesis for D_{XY}^{Gen} must ensure that it equals the weighted sum of the individual risks of the optimal hypotheses within D_{XY}^{Gen} :

$$\inf_{h \in \mathcal{H}} R_{\mathcal{D}_{XY}^{Gen}} = \sum_{i=1}^{N} \alpha_i \inf_{inst_i} R_{inst_i}$$

ace
$$(\mathscr{D}_{XY}^{Ind} \cup \mathscr{D}_{XY}^{Dep} = \mathscr{D}_{XY}^{Gen})$$

such that $\sum_{i=1}^{N} \alpha_i = 1, \quad 0 \le \alpha_i \le 1$

• **Theorem 3.** If a MIL algorithm satisfies Condition 7 in \mathscr{D}_{XY}^{Gen} , it is learnable for instances.

such that

$$\sum_{i=1}^{N} \alpha_i = 1, \quad 0 \le \alpha_i \le 1$$

IV. Theoretical Verification of Existing Deep MILs **IV.I. Classifications of Existing Deep MIL Methodologies**

- Aggregation-level
 - At which stage are the values of individual instances aggregated?
- **Attention-Target**
 - At which stage are attention weights applied to the instances?

Table 4: Classification of existing Deep MIL methodologies

	Instance -Pooling	Embedding -Pooling	Attention -Pooling	Additive -Pooling	Conjunctive -Pooling
Aggregation-level	Instance	Embedding	Embedding	Instance	Instance
Attention-target	None	None	Embedding	Embedding	Instance

- Lemma 1. Condition 9 serves as a necessary condition for the learnability of $\mathcal{H}_{inst} \cup \mathcal{H}_{add}$
 - Condition 9. \mathcal{H}_{add} , must be a subset of \mathcal{H}_{inst} :

$$\mathcal{H}_{inst_i} \supset \mathcal{H}_{add_i}$$
:

- for instances.
- instances.

instances, when the hypothesis space for the i^{th} instance of a MIL algorithm is

 $:= \{h_{add_i} : \mathscr{X}_{add_i} \to \mathscr{Y}\}$

• **Theorem 6.** In \mathscr{D}_{XY}^{Ind} , MIL algorithms that perform instance-pooling are <u>PAC learnable</u>

Theorem 7. MIL algorithms that perform <u>Embedding-Pooling</u> are <u>not learnable</u> for

- for instances.
 - Condition 10. The risk R_{inst} for the i^{th} instance should be as follows:

$$R_{inst_i} = \mathbb{E}_{(x_{inst_i}, y) \sim D_{X_{inst_i}}} \mathscr{C}_{inst_i}(h, y)$$

- <u>Attention-Pooling and Additive-Pooling is not learnable for Instances</u>
- they are learnable for instances.

• **Theorem 8.** If the MIL algorithm does not adhere to Condition 10, it is not learnable

y), where $h \in \mathcal{H}_{inst_i} \cup \mathcal{H}_{bag-level_i}$

• Theorem 9. When MIL algorithms use <u>Conjunctive-Pooling</u> for aggregation in \mathscr{D}_{XY}^{Gen} ,

Table 2: Prediction performance of Deep MIL on Bags in D_{XY}^{Gen} .

		Macro-F1 Score	Micro-F1 Score	Weighted-F1 Score
Instance-Pooling	mi-Net	0.3286	0.5548	0.4550
	Causal MIL	0.2341	0.3577	0.2645
	MIREL	0.3623	0.5318	0.4372
Attention-Pooling	Attention MIL	0.7652	0.7683	0.7583
	Loss-Attention	0.7935	0.7832	0.7753
	SA-AbMILP	0.7540	0.7619	0.7562
	TransMIL	0.7834	0.7711	0.7738
Additive-Pooling	Additive MIL	0.5314	0.6341	0.5732
Conjunctive-Pooling	Conjunctive MIL	0.7544	0.7701	0.7683
None-Pooling	Fully Connected Layer	0.7704	0.7724	0.7714

Table 3: Prediction performance comparison of MIL algorithms on bags and instances.

	Performance of Bags (PB)		Performance of Instances (PI)		PI - PB	
	Macro-F1	AUROC	Macro-F1	AUROC	Macro-F1	AUROC
Attention MIL	0.8434	0.9516	0.3215	0.7317	-0.5219	-0.2199
Loss-Attention	0.8228	0.9574	0.4797	0.7951	-0.3431	-0.1623
SA-AbMILP	0.7692	0.9552	0.3340	0.5464	-0.4352	-0.4088
TransMIL	0.8515	0.9622	0.2192	0.5369	-0.6323	-0.4253
Additive MIL	0.4776	0.9181	0.2320	0.8092	-0.2456	-0.1089
Conjunctive MIL	0.7916	0.9463	0.6430	0.9516	-0.1486	+0.0053

IV. Theoretical Verification of Existing Deep MILs **IV.III.I.** Rethinking Position Dependencies of Instances on Deep MILs

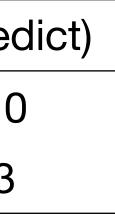
- neural networks for aggregation, it is unable to learn from instances.
- **Theorem 11.** If the hypothesis space $\mathscr{H}_{Pos-Encode_i}$ generated through positional then the algorithm is <u>not PAC learnable</u> for instances.

Table 4: Test positional dependencies for WebTraffic datasets

	Default	PE (All)	PE (Att)	PE (Predict)	RNN (All)	RNN (Att)	RNN (Prec
AOPCR	13.041	12.372	<u>14.555</u>	12.256	9.011	17.502	12.210
NDCG@n	0.676	0.665	0.727	0.642	0.620	<u>0.714</u>	0.523

• Theorem 10. If the MIL algorithm extracts features of instances through <u>RNN-based</u>

<u>encoding</u> values for the *i*-th position of the MIL algorithm is not a subset of \mathscr{H}_{inst} ,



IV. Theoretical Verification of Existing Deep MILs **IV.III.II. Instance Learnability for Multi-dimensional Deep MILs**

- Multi-Dimensional(MD) MIL predicts multi-dimensional instances using a toplevel bag label.
- MD-instances should consider relationships with other dimensions.
 - **Conjunctive-Pooling, reflecting MD relationships through attention, showed** the best performance.

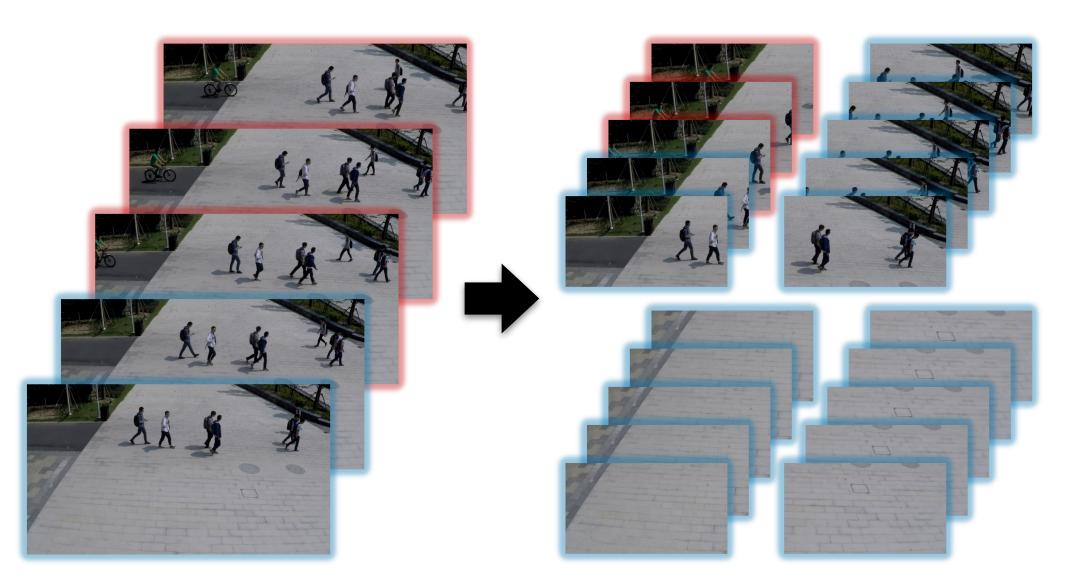


Table 4: Predicted performance for Snippets (i.e., bags) and patches (i.e., instances) of MD-MIL.

	None- Attention	Attention	Cross- Attentio
Snippet (Bag)	0.87	0.88	0.91
Patch (Instance)	0.85	0.85	0.91

V. Conclusions

- This study proposes a theoretical framework that defines the necessary assuming Assumption 1 is satisfied.
- learnability is critical.
 - primarily relying on Attention-Pooling methods.
- Future theoretical and experimental validations regarding positional **MIL** research.

conditions for an MIL algorithm to achieve learnability at the instance level,

The framework is expected to benefit various domains where instance-level

 Although MIL is actively utilized in domains with limited labeling, such as medical applications, most research has focused on bag-level performance,

dependencies and MD-MIL are anticipated to support further advancements in

Thank You

