Large Stepsize Gradient Descent for Non-Homogeneous Two-Layer Networks Margin Improvement and Fast Optimization

Yuhang Cai¹, Jingfeng Wu¹, Song Mei¹, Michael Lindsey¹², Peter Bartlett¹³

¹UC Berkeley, ¹Lawrence Berkeley National Laboratory, ³Google DeepMind

Background

3-layer net + 1,000 samples from MNIST

- -When training neural networks, **large stepsize** works better!
- -"**Spikes**" or "**Edge of Stability**" unexplained by descent lemma.
- -Implicit bias exists for **non-linear nonhomogeneous models**!

Setting

1. Binary classification data $(x_i, y_i \in \{\pm 1\})$. 2. Logistic loss: $L(w) := -\sum_{i=1}^{\infty} \ln(1 + \exp(-y_i f(w; x_i)).$ 3. Gradient descent: $(x_i, y_i \in \{\pm 1\})$ $L(w) :=$ 1 \overline{n} \overline{L} *i* ln(1 + exp(−*y_if*(*w*; *x_i*)) $w_{t+1} = w_t - \eta \nabla_w L(w_t)$.

n i=1

Stable phase and EoS phase

1.**EoS Phase.**

- Loss oscillates but has a decreasing trend.

2.**Stable Phase.**

- Loss monotonically decreases.
- The parameter norm increases.
- The parameter direction converges.
- The normalized margin,

increases and stays positive.

$$
\bar{\gamma}(w) = \frac{\min_{i \in [n]} y_i f(w; x_i)}{\|w\|^M},
$$

A Theory for Non-homogeneous models Stable phase

Near-homogeneous Models

- $-$ Lipschitzness. $||\nabla_w f(w; x)|| \le \rho$.
- $-$ **Smoothness**. $\|\nabla_w^2 f(w; x)\|_2 \leq \beta$.
- **Near-homogeneity**. $|\langle \nabla_w f(w; x), w \rangle f(w; x)| \leq \kappa$.

Theorem 2.2 (Stable phase)

If $L(w_s) \le \min\{1/2e^{\kappa+2n}, 1/(4\rho^2+2\beta)\eta\}$ for some *s*, then for $t \ge s$ $-L(w_t) = \Theta(1/t)$ decreases; $-||w_t|| = \Theta(\log t)$ increases;

- $\bar{\gamma}(w_t)$ stays positive and converges with a nearly increasing trend.

A Theory for Non-homogeneous models EoS Phase

$$
f(w; x) = \frac{1}{m} \sum_{j=1}^{m} a_j \phi(x^T w^{(j)})
$$

 $-$ **Lipschitzness.** $\alpha \leq \phi'(x) \leq 1$.

- **Near-homogeneity**. $|\phi'(x)x - \phi(x)| \leq \kappa$.

1 *t t*−1 ∑ $k=0$ $L(w_k) \leq \tilde{O}$

Assume: ∃ vector *w** such that $yx^{\top}w_* > \gamma > 0$

Two-layer Networks

Theorem 3.2 (EoS phase)

Given a two-layer NN. For every *t*,

$$
\tilde{O}\left(\frac{1+\eta^2}{\eta t}\right).
$$

A Theory for Non-homogeneous models

Phase transition

Theorem 4.1 (Phase transition)

For two-layer NNs, $L(w_s) \leq 1/\eta$ for Where $c_1 = 2e^{\kappa+2}$, $c_2 = (4\rho^2 + 2\beta)$. $s \leq \tau := \Theta\left(\max\{c_1\eta, c_2\eta, c_2\eta/\eta\ln(c_2\eta/\eta)\}\right)$

Corollary 4.2 (Fast optimization)

For two-layer NNs, if $\eta = \Theta(T)$, then $L(T) = O(1/T^2)$.

Conclusion

We generalize the results for homogeneous models in [Lyu & Li 2020] to non-homogeneous models. 1.This includes **a broad class of activation functions**! Smooth Leaky ReLU, GELU, SiLU, Huberized ReLU etc.. 2.Even with the non-homogeneous model, we show the **weak convergence of implicit bias.**

We generalize the results for linear models in [Wu et al. 2024] to non-linear two-layer networks. **1. Asymptotic** $\tilde{O}(1/\eta t)$ **for every** η (beyond 1/smoothness) 2.Given #steps $T \geq \Omega(n)$, if choose $\eta = \Theta(T)$, then and $\tau \leq T/2$ and $L(w_T) \leq \tilde{O}(1/T^2)$

3. Theorem. In general, if not enter EoS, then $L(w_T) \ge \Omega(1/T)$

-
- **The normalized margin converges!**

Implicit bias with Near-homogeneity

Large stepsizes for non-linear model

References

- Wu J, Bartlett P L, Telgarsky M, et al. Large Stepsize Gradient Descent for Logistic Loss: Non-Monotonicity of the Loss Improves Optimization Efficiency[J]. arXiv preprint arXiv:2402.15926, 2024.

- Lyu K, Li J. Gradient descent maximizes the margin of homogeneous neural networks[J]. arXiv preprint arXiv:1906.05890, 2019.

