
SplitNeRF: Split Sum Approximation Neural Field for Joint Geometry, Illumination, and Material Estimation

Jesus Zarzar, Bernard Ghanem

Geometry

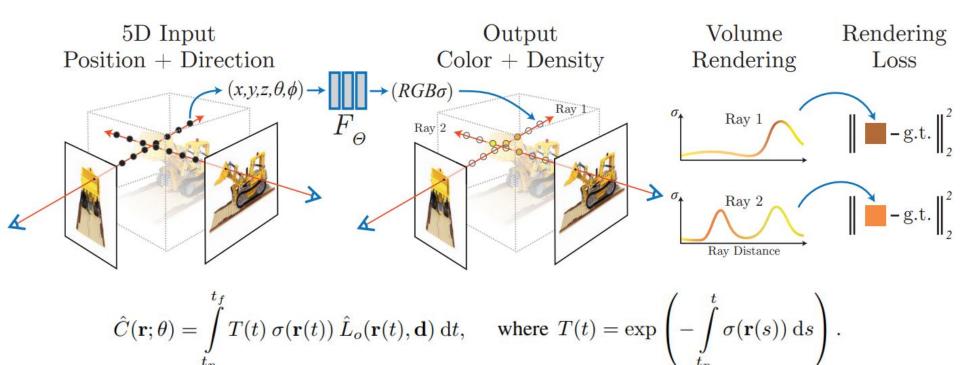
Material Properties

Object Views

Geometry

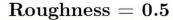
Material Properties

Illumination



Relighting

Background: NeRF

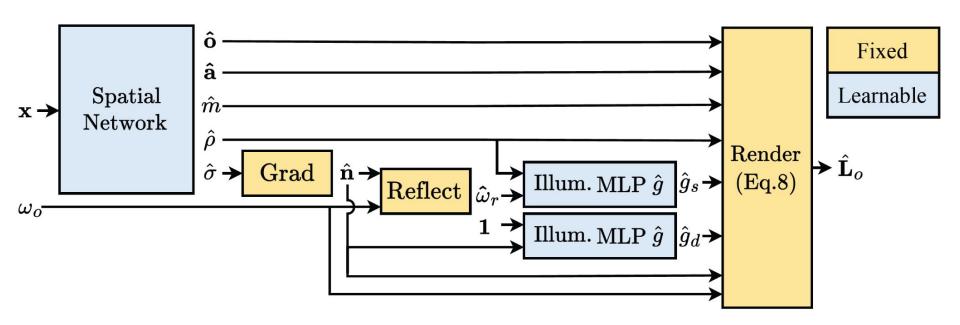


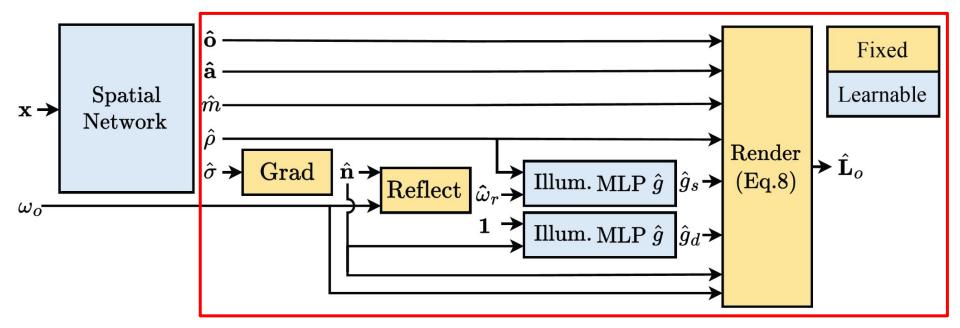
Background: PBR Shading

Split-Sum Approximation with Image-Based Lighting

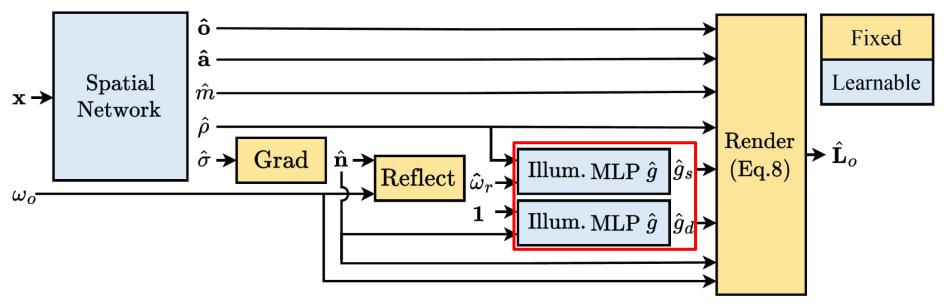
Roughness = 0.0

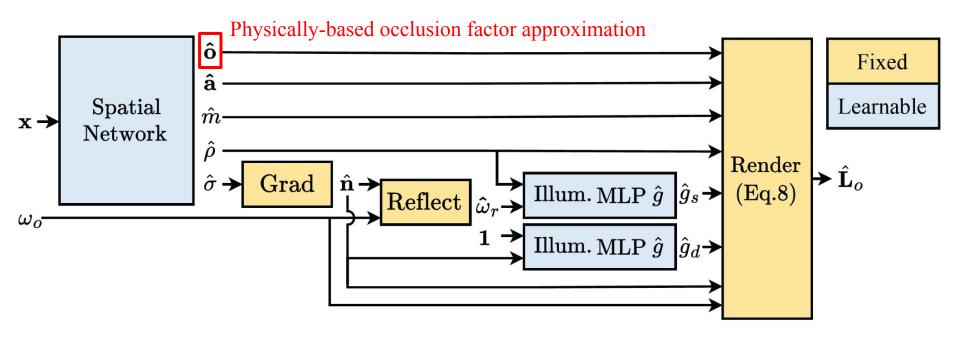
Roughness = 1.0



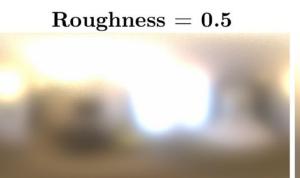


Contributions

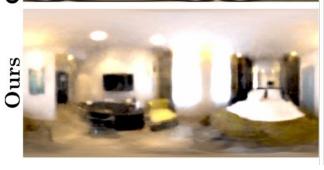

- 1. A novel **MLP representation** for pre-integrated illumination regularized to be **physically accurate**.
- 2. **Self-occlusion approximation** for pre-integrated lighting with an additional MLP to improve material estimation.
- 3. Competitive **reconstruction and relighting quality** on both synthetic and **real data** with ~1 **GPU-hour** training time.



Physically-based radiance prediction

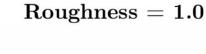


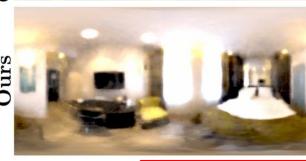
Shared pre-integrated illumination network



Method: MLP Illumination

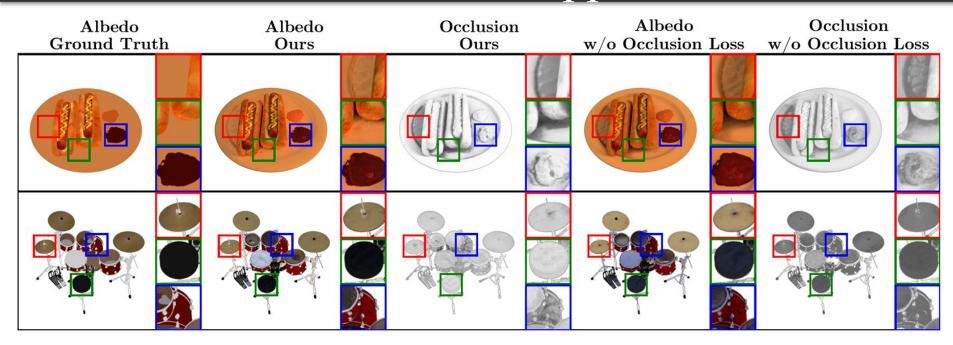
Method: MLP Illumination


Roughness = 0.0


Truth

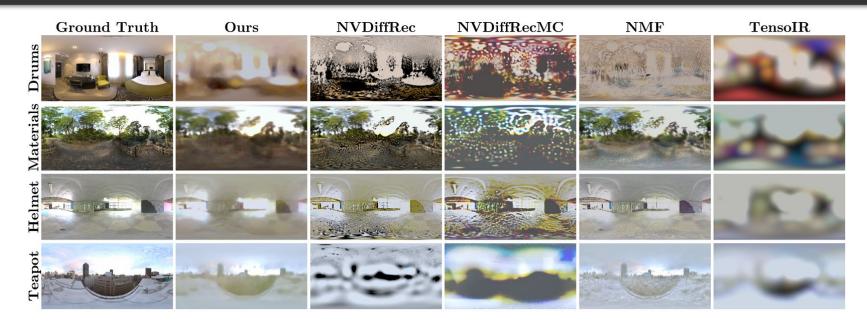
Fround

Roughness = 0.5



$$\mathcal{L}_{D}(\theta) = \frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} |\hat{g}(s) - \bar{g}(s)|_{2}^{2}, \quad \bar{g}(s) = \frac{\sum_{\omega_{i} \in \Omega} D(\omega_{i}, \omega_{s}, \rho_{s}) \hat{g}(\omega_{i}, 0) \langle \omega_{i}, \omega_{s} \rangle}{\sum_{\omega_{i} \in \Omega} D(\omega_{i}, \omega_{s}, \rho_{s}) \langle \omega_{i}, \omega_{s} \rangle}$$

Method: Self-Occlusion Approximation


$$\mathcal{L}_{o}(\theta) = \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} w |\hat{o}(x) - \bar{o}(x)|_{2}^{2}, \quad \overline{o_{d}}(x) = \frac{\sum_{\omega_{i} \in \Omega} L_{i} V_{i}}{\sum_{\omega_{i} \in \Omega} L_{i}}, \quad \overline{o_{s}}(x) = \frac{\sum_{\omega_{i} \in \Omega} L_{i} V_{i} \langle \omega_{i}, n \rangle}{\sum_{\omega_{i} \in \Omega} L_{i} \langle \omega_{i}, n \rangle}$$

Results: Illumination Estimation

- Predicted illumination for our method and baselines for four different scenes.
- Our representation inherits **smoothness** from the MLP but still captures **high-frequency details** such as indoor objects, trees, and buildings.

- Predictions on four scenes from the **real-life** CO3D dataset.
- Our method can successfully recover object geometry, material properties, and illumination for challenging scenes captured in the wild.

Method	Normals	${f Albedo}$			Relighting			Average
	MAE ↓	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓	Runtime
NerFactor	30.49	23.53	0.910	0.109	23.66	0.895	0.120	>20 hr.
NVDiffRec	26.47	23.05	0.901	0.123	21.88	0.880	0.111	0.98 hr.
NVDiffRecMC	25.98	23.84	0.918	0.114	24.06	0.902	0.099	2.95 hr.
NeRO	30.59	22.83	0.897	0.117	23.68	0.907	0.093	18.38 hr.
NMF	24.14	-	-	-	22.23	0.895	0.093	2.91 hr.
TensoIR	22.90	25.21	0.929	0.087	23.78	0.907	0.100	3.53 hr.
Ours	17.52	25.29	0.924	0.108	27.31	0.941	0.061	0.81 hr.

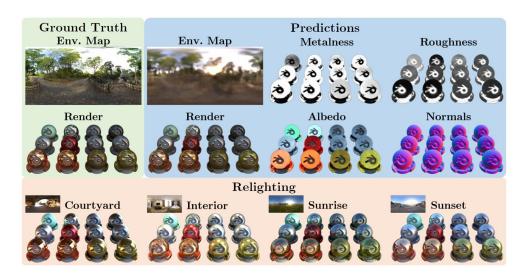
- Reconstruction and relighting quality of our method vs. baselines on the NeRFactor dataset.
- Our method attains **competitive performances** across all metrics with the **lowest runtime**

Method	Normals	${f Albedo}$			Relighting			Average
	MAE ↓	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓	Runtime
NerFactor	30.49	23.53	0.910	0.109	23.66	0.895	0.120	>20 hr.
NVDiffRec	26.47	23.05	0.901	0.123	21.88	0.880	0.111	0.98 hr.
NVDiffRecMC	25.98	23.84	0.918	0.114	24.06	0.902	0.099	2.95 hr.
NeRO	30.59	22.83	0.897	0.117	23.68	0.907	0.093	18.38 hr.
NMF	24.14	i -	-	-	22.23	0.895	0.093	2.91 hr.
TensoIR	22.90	25.21	0.929	0.087	23.78	0.907	0.100	3.53 hr.
Ours	17.52	25.29	0.924	0.108	27.31	0.941	0.061	0.81 hr.

- Reconstruction and relighting quality of our method vs. baselines on the NeRFactor dataset.
- Our method attains **competitive performances** across all metrics with the **lowest runtime**

Method	Normals	${f Albedo}$			Relighting			Average
11101101	MAE ↓	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓	Runtime
NerFactor	30.49	23.53	0.910	0.109	23.66	0.895	0.120	>20 hr.
NVDiffRec	26.47	23.05	0.901	0.123	21.88	0.880	0.111	0.98 hr.
NVDiffRecMC	25.98	23.84	0.918	0.114	24.06	0.902	0.099	2.95 hr.
NeRO	30.59	22.83	0.897	0.117	23.68	0.907	0.093	18.38 hr.
NMF	24.14	-	-	-	22.23	0.895	0.093	2.91 hr.
TensoIR	22.90	25.21	0.929	0.087	23.78	0.907	0.100	3.53 hr.
Ours	17.52	25.29	0.924	0.108	27.31	0.941	0.061	0.81 hr.

- Reconstruction and relighting quality of our method vs. baselines on the NeRFactor dataset.
- Our method attains **competitive performances** across all metrics with the **lowest runtime**


Method	Normals	${f Albedo}$			Relighting			Average
	MAE ↓	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓	Runtime
NerFactor	30.49	23.53	0.910	0.109	23.66	0.895	0.120	>20 hr.
NVDiffRec	26.47	23.05	0.901	0.123	21.88	0.880	0.111	0.98 hr.
NVDiffRecMC	25.98	23.84	0.918	0.114	24.06	0.902	0.099	2.95 hr.
NeRO	30.59	22.83	0.897	0.117	23.68	0.907	0.093	18.38 hr.
NMF	24.14	-	-	-	22.23	0.895	0.093	2.91 hr.
TensoIR	22.90	25.21	0.929	0.087	23.78	0.907	0.100	3.53 hr.
Ours	17.52	25.29	0.924	0.108	27.31	0.941	0.061	0.81 hr.

- Reconstruction and relighting quality of our method vs. baselines on the NeRFactor dataset.
- Our method attains **competitive performances** across all metrics with the **lowest runtime**

SplitNeRF: Split Sum Approximation Neural Field for Joint Geometry, Illumination, and Material Estimation

Jesus Zarzar, Bernard Ghanem

