

CycleNet

Enhancing Time Series Forecasting through Modeling Periodic Patterns

Shengsheng Lin¹, Weiwei Lin^{1,2,*}, Xinyi Hu³. Wentai Wu⁴, Ruichao Mo¹, Haocheng Zhong¹

¹South China University of Technology

²Pengcheng Laboratory

³The Chinese University of Hong Kong

4Jinan University

- ⚫ Long-term Time Series Forecasting (**LTSF**) Tasks :
	- ➢ **Longer look-back windows** are required for accurate predictions over **extending forecast horizon**
	- ➢ **Mainstream methods** rely on *stacking deep architectures* to extract long-term dependencies from extended look-back windows, enabling more accurate *modeling of periodic patterns*

CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns (NeurIPS 2024 Spotlight)

 \mathfrak{D}

1. Motivations

2. Contributions

3. Method

4. Interpretability

1. Motivations

2. Contributions

3. Method

4. Interpretability

- **Intuitions** about Periodic Patterns:
	- ➢ Stable **periodic patterns** present in time series data serve as the foundation for **accurate long-horizon forecasts**
	- ➢ These **periodic patterns** in time series data can be directly represented through *globally shared segments*.
- **Explicit modeling** of periodicity:
	- ➢ Pioneering **explicit modeling** of *periodic patterns* in sequences to enhance time series forecasting tasks.

- **1. Motivations**
- **2. Contributions**
- **3. Method**
- **4. Interpretability**
- **5. Results**
- ⚫ **Residual Cycle Forecasting** (**RCF**) technique:
	- ➢ Utilizing *learnable* **recurrent cycles** to explicitly model the inherent *periodic patterns* within time series data, followed by predicting the **residual components** of the modeled cycles.
- ⚫ **CycleNet** model:
	- ➢ The proposed **CycleNet** (combined RCF with Linear/MLP) achieves **state-of-the-art** performance with *significant efficiency advantages*.

CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns (NeurIPS 2024 Spotlight)

 Δ

- ⚫ **The core idea of** *RCF* technique:
	- ➢ **Phase 1 (Periodic patterns modeling):** Utilizing *learnable* **recurrent cycles** to explicitly model the inherent *periodic patterns* within time series data
	- ➢ **Phase 2 (Residual forecasting):** Predicting the **residual components** of the modeled cycles.

CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns (NeurIPS 2024 Spotlight)

5

- **1. Motivations**
- **2. Contributions**
- **3. Method**
- **4. Interpretability**
- **5. Results**

- **2. Contributions**
- **3. Method**
- **4. Interpretability**

- ⚫ **Phase 1 (Periodic patterns modeling)**:
	- $▶$ Generate *learnable* **recurrent cycles** $Q \in \mathbb{R}^{W \times D}$ and all initialized to **zeros**, where *W* is the length of periodicity and D is the number of channels.
	- ➢ The *learnable* **recurrent cycles** will undergo **gradient backpropagation** training along with the backbone module for prediction, **yielding learned representations**.

⚫ **Phase 2 (Residual forecasting)**:

5. Results

Example 1 Remove the **cyclic components** $c_{t-L+1:t}$ from the original input $x_{t-L+1:t}$ to obtain **residual components** $x'_{t-L+1:t}$

3. Method

1. Motivations

- ⚫ **Phase 2 (Residual forecasting)**:
	- $▶$ **(Step 2)** Pass $x'_{t-L+1:t}$ through the *backbone* to obtain **predictions** for the \mathbf{r} esidual components, $\bar{x}'_{t+1:t+H}$

3. Method

- ⚫ **Phase 2 (Residual forecasting)**:
	- **► (Step 3**) Add the **predicted residual components** $\bar{x}'_{t+1:t+H}$ to the **cyclic components** $c_{t+1:t+H}$ to obtain final prediction $\bar{x}_{t+1:t+H}$
- **1. Motivations**
- **2. Contributions**
- **3. Method**
- **4. Interpretability**
- **5. Results**

- ⚫ **Backbone for residual forecasting:**
	- ➢ Can be any **existing** time series forecasting model.
	- ➢ Combining **Linear** or dual-layer **MLP** forms the proposed simple yet powerful methods, **CycleNet**.
- **1. Motivations**
- **2. Contributions**
- **3. Method**
- **4. Interpretability**
- **5. Results**

- ⚫ **Generation of the cyclic components**:
	- ➢ Appropriate **alignments and repetitions (**according to **relative positional index** $t \text{ mod } W$ of the **recurrent cycles** Q are needed to obtain equivalent cyclic components.

11

1. Motivations

2. Contributions

3. Method

4. Interpretability

5. Results

⚫ **Generation of the cyclic components**:

- Step1: Left-shift Q by t mod W positions to obtain $Q^{(t)}$. Here, t mod W can be viewed as the **relative positional index** of the current sequence sample within Q .
- **►** Step2: Repeat $Q^{(t)}$ [L/W] times and concatenate $Q_{0:L \mod W}^{(t)}$.

$$
c_{t-L+1:t} = [Q^{(t)}, \cdots, Q^{(t)}, Q^{(t)}_{0:L \mod W}],
$$

$$
c_{t+1:t+H} = [Q^{(t+L)}, \cdots, Q^{(t+L)}, Q^{(t+L)}_{0:H \mod W}].
$$

$$
[H/W]
$$

12

The *learnable* recurrent cycles Q in RCF technique can effectively learn the inherent periodic patterns!

Main Results (Multivariate long-term time series forecasting)

4. Interpretability

1. Motivations

2. Contribution

5. Results

3. Method

Achieving State-of-the-Art Performance with Minimal Computational Resources

Ablation study (Datasets with significant periodicity)

- ➢ The RCF technique significantly **enhances** the predictive performance of **basic models** like *Linear* and *MLP*.
- ➢ For more **advanced models**, such as *PatchTST*, the RCF technique can also achieve further improvements..

CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns (NeurIPS 2024 Spotlight)

15

1. Motivations

2. Contributions

3. Method

4. Interpretability

Ablation study (Comparison of different STD techniques)

- \triangleright The RCF technique can essentially be considered a type of **Seasonal-Trend Decomposition** (**STD**) method.
- ➢ RCF **significantly outperforms** other existing STD methods, particularly on datasets with strong periodicity.
- \triangleright RCF enables models to overcome the limitations of finite-length look-back windows, as periodic components are **globally estimated** from the entire

training set.

16

1. Motivations

2. Contributions

3. Method

4. Interpretability

Further analysis (The Impact of hyperparameters W)

3. Method

5. Results

- \triangleright When the length of the learnable recurrent cycles (W) is correctly set to **match the inherent periodicity** of the data,
- ➢ RCF can effectively **learn the correct periodic patterns**, leading to significant performance improvements.
- ➢ RCF is **robust** to other hyperparameters.

17

2. Contributions

3. Method

4. Interpretability

5. Results

➢ **Determine** the cycle length through **Autocorrelation Function** (**ACF**):

$$
ACF = \frac{\sum_{t=1}^{N-k} (x_t - \bar{x})(x_{t+k} - \bar{x})}{\sum_{t=1}^{N} (x_t - \bar{x})^2}
$$

 \triangleright The hyperparameter *W* should be set to the *lag* corresponding to the **observed maximum peak**.

Thank You!

Paper Code Code Our Team

https://github.com/ACAT-SCUT