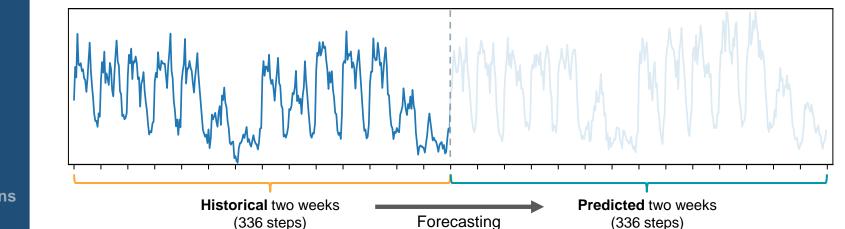


CycleNet

Enhancing Time Series Forecasting through Modeling Periodic Patterns


Shengsheng Lin¹, Weiwei Lin^{1,2,*}, Xinyi Hu³. Wentai Wu⁴, Ruichao Mo¹, Haocheng Zhong¹

¹South China University of Technology

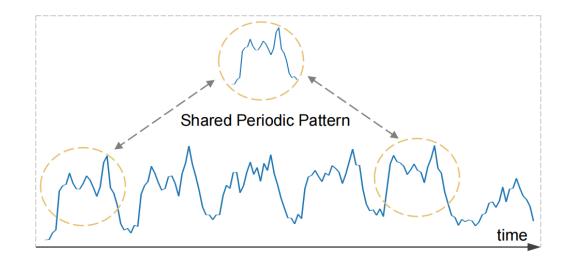
²Pengcheng Laboratory

³The Chinese University of Hong Kong

⁴Jinan University

- Long-term Time Series Forecasting (LTSF) Tasks :
 - Longer look-back windows are required for accurate predictions over extending forecast horizon
 - Mainstream methods rely on *stacking deep architectures* to extract long-term dependencies from extended look-back windows, enabling more accurate *modeling of periodic patterns*

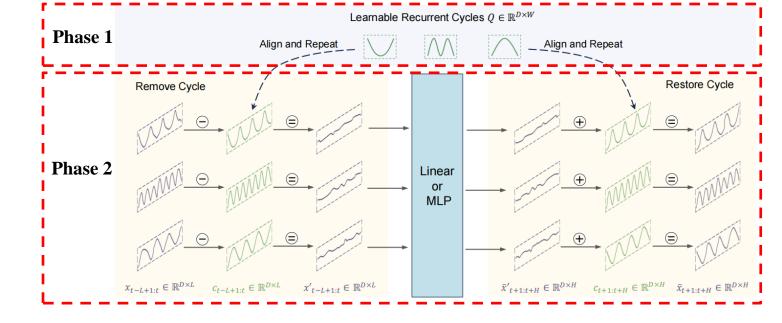
CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns (NeurIPS 2024 Spotlight)


- 1. Motivations
- 2. Contributions
- 3. Method
- 4. Interpretability
- 5. Results

1. Motivations

2. Contributions

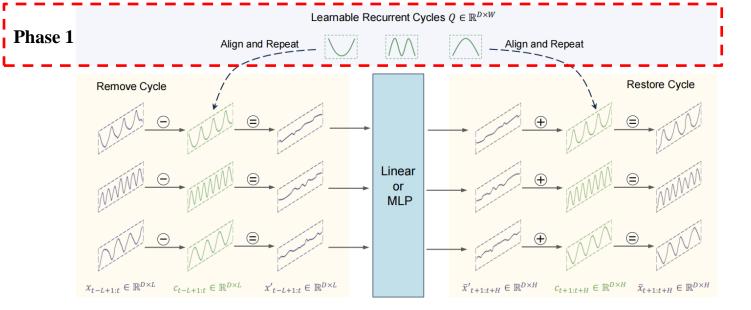
3. Method


4. Interpretability

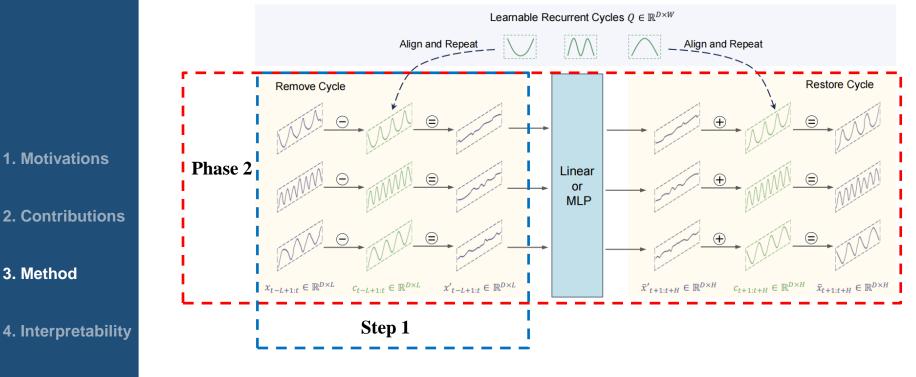
- Intuitions about Periodic Patterns:
 - Stable periodic patterns present in time series data serve as the foundation for accurate long-horizon forecasts
 - These periodic patterns in time series data can be directly represented through globally shared segments.

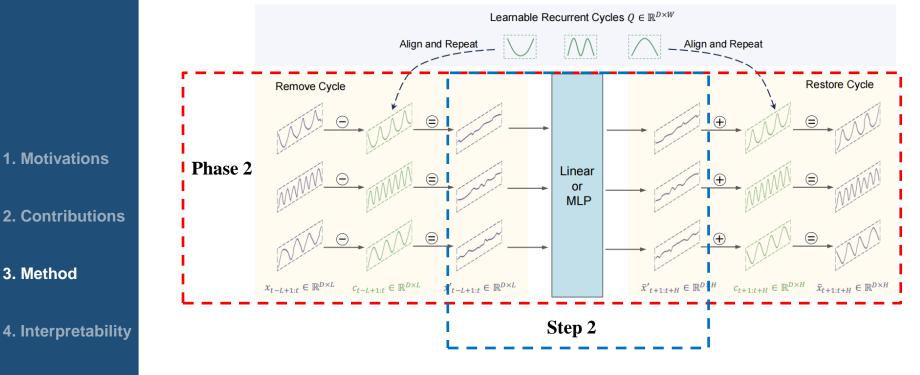
- 1. Motivations
- 2. Contributions
- 3. Method
- 4. Interpretability
- 5. Results

- Explicit modeling of periodicity:
 - Pioneering explicit modeling of *periodic patterns* in sequences to enhance time series forecasting tasks.
- **Residual Cycle Forecasting** (**RCF**) technique:
 - Utilizing *learnable* recurrent cycles to explicitly model the inherent *periodic patterns* within time series data, followed by predicting the residual components of the modeled cycles.
- CycleNet model:
 - The proposed CycleNet (combined RCF with Linear/MLP) achieves state-of-the-art performance with significant efficiency advantages.

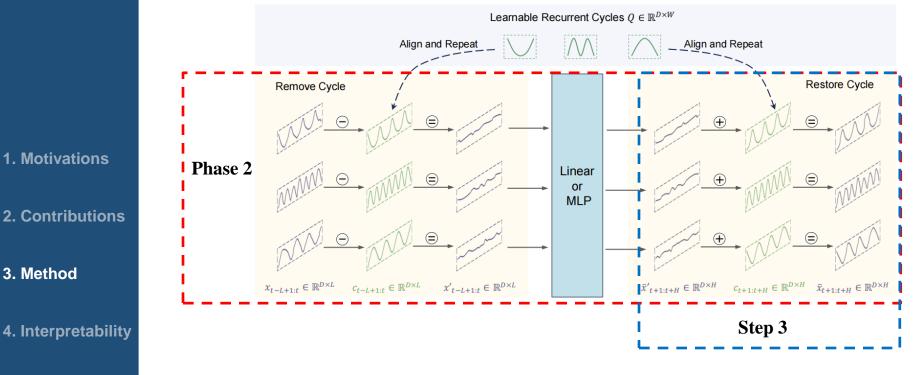

- The core idea of *RCF* technique:
 - Phase 1 (Periodic patterns modeling): Utilizing *learnable* recurrent cycles to explicitly model the inherent *periodic patterns* within time series data
 - Phase 2 (Residual forecasting): Predicting the residual components of the modeled cycles.

CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns (NeurIPS 2024 Spotlight)


- 1. Motivations
- 2. Contributions
- 3. Method
- 4. Interpretability
- 5. Results

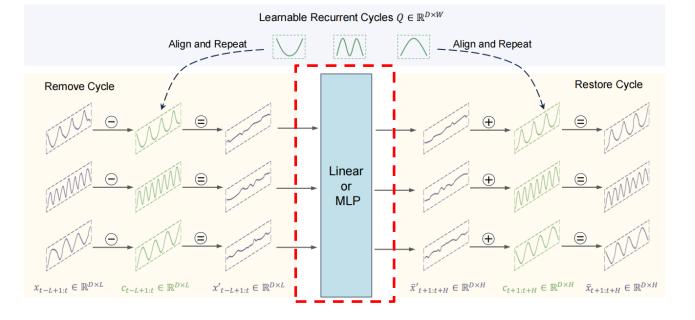

- 2. Contributions
- 3. Method
- 4. Interpretability

- Phase 1 (Periodic patterns modeling):
 - ➢ Generate *learnable* recurrent cycles *Q* ∈ $\mathbb{R}^{W \times D}$ and all initialized to <u>zeros</u>, where *W* is the length of periodicity and *D* is the number of channels.
 - The *learnable* recurrent cycles *Q* will undergo gradient backpropagation training along with the backbone module for prediction, yielding <u>learned representations</u>.

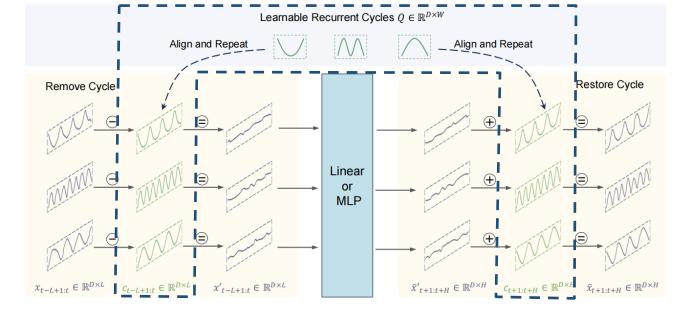

- Phase 2 (Residual forecasting):
 - (Step 1) Remove the cyclic components $c_{t-L+1:t}$ from the original input $x_{t-L+1:t}$ to obtain residual components $x'_{t-L+1:t}$

3. Method

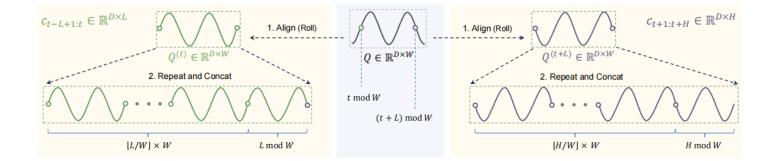
1. Motivations


- Phase 2 (Residual forecasting):
 - \geq (Step 2) Pass $x'_{t-L+1:t}$ through the *backbone* to obtain predictions for the residual components, $\bar{x}'_{t+1:t+H}$

3. Method


- Phase 2 (Residual forecasting):
 - (Step 3) Add the predicted residual components $\bar{x}'_{t+1:t+H}$ to the cyclic \geq **components** $c_{t+1:t+H}$ to obtain final prediction $\bar{x}_{t+1:t+H}$

- 1. Motivations
- 2. Contributions
- 3. Method
- 4. Interpretability
- 5. Results



- Backbone for residual forecasting:
 - Can be any **existing** time series forecasting model.
 - Combining Linear or dual-layer MLP forms the proposed simple yet powerful methods, CycleNet.

- 1. Motivations
- 2. Contributions
- 3. Method
- 4. Interpretability
- 5. Results

- Generation of the cyclic components:
 - Appropriate alignments and repetitions (according to relative positional index t mod W) of the recurrent cycles Q are needed to obtain equivalent cyclic components.

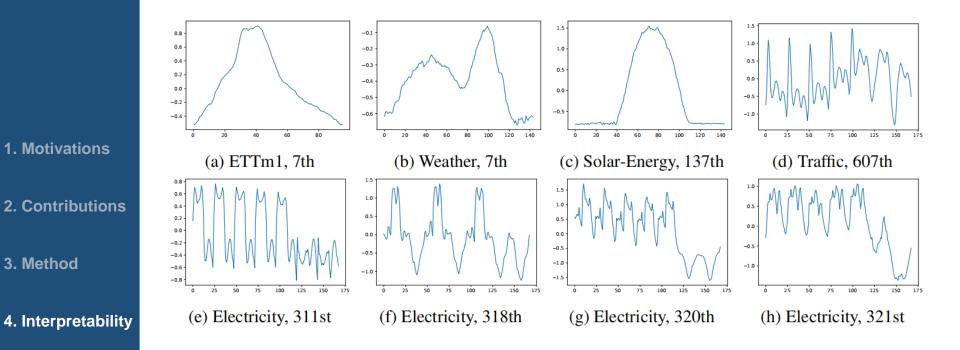
1. Motivations

2. Contributions

3. Method

4. Interpretability

5. Results


• Generation of the cyclic components:

- Step1: Left-shift Q by t mod W positions to obtain $Q^{(t)}$. Here, t mod W can be viewed as the relative positional index of the current sequence sample within Q.
- Step2: Repeat $Q^{(t)} \lfloor L/W \rfloor$ times and concatenate $Q_{0:L \mod W}^{(t)}$.

$$c_{t-L+1:t} = [\underbrace{Q^{(t)}, \cdots, Q^{(t)}}_{\lfloor L/W \rfloor}, Q^{(t)}_{0:L \mod W}],$$

$$c_{t+1:t+H} = [\underbrace{Q^{(t+L)}, \cdots, Q^{(t+L)}}_{\lfloor H/W \rfloor}, Q^{(t+L)}_{0:H \mod W}]$$

12

The *learnable* recurrent cycles Q in RCF technique can effectively learn the inherent periodic patterns!

Main Results (Multivariate long-term time series forecasting)

	Dataset	ETTh1		ETTh2		ETTm1		ETTm2		Electricity		Solar-Energy		Traffic		Weather	
	Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
	Autoformer [2021]	0.496	0.487	0.450	0.459	0.588	0.517	0.327	0.371	0.227	0.338	0.885	0.711	0.628	0.379	0.338	0.382
	FEDformer [2022]	<u>0.440</u>	0.460	0.437	0.449	0.448	0.452	0.305	0.349	0.214	0.327	0.291	0.381	0.610	0.376	0.309	0.360
	SCINet [2022]	0.747	0.647	0.954	0.723	0.485	0.481	0.571	0.537	0.268	0.365	0.282	0.375	0.804	0.509	0.292	0.363
	DLinear [2023]	0.456	0.452	0.559	0.515	0.403	0.407	0.350	0.401	0.212	0.300	0.330	0.401	0.625	0.383	0.265	0.317
	TimesNet [2023]	0.458	0.450	0.414	0.427	0.400	0.406	0.291	0.333	0.192	0.295	0.301	0.319	0.620	0.336	0.259	0.287
	TiDE [2023]	0.541	0.507	0.611	0.550	0.419	0.419	0.358	0.404	0.251	0.344	0.347	0.417	0.760	0.473	0.271	0.320
າຣ	Crossformer [2023]	0.529	0.522	0.942	0.684	0.513	0.496	0.757	0.610	0.244	0.334	0.641	0.639	0.550	0.304	0.259	0.315
	PatchTST [2023]	0.469	0.454	0.387	0.407	0.387	0.400	0.281	0.326	0.205	0.290	0.270	0.307	0.481	0.304	0.259	0.281
	TimeMixer [2024]	0.447	0.440	0.364	0.395	<u>0.381</u>	<u>0.395</u>	0.275	0.323	0.182	0.272	<u>0.216</u>	0.280	0.484	0.297	0.240	0.271
	iTransformer [2024]	0.454	0.447	<u>0.383</u>	0.407	0.407	0.410	0.288	0.332	0.178	0.270	0.233	0.262	0.428	0.282	0.258	0.278
	CycleNet/Linear	0.432	0.427	0.383	0.404	0.386	0.395	0.272	<u>0.315</u>	<u>0.170</u>	0.260	0.235	0.270	0.485	0.313	0.254	0.279
	CycleNet/MLP	0.457	0.441	0.388	0.409	0.379	0.396	0.266	0.314	0.168	0.259	0.210	0.261	<u>0.472</u>	0.301	<u>0.243</u>	0.271

1. Motivations

2. Contributions

3. Method

4. Interpretability

5. Results

Achieving State-of-the-Art Performance with Minimal Computational Resources

Model	Parameters	MACs	Training Time(s)
Informer [2021]	12.53M	3.97G	70.1
Autoformer [2021]	12.22M	4.41G	107.7
FEDformer [2022]	17.98M	4.41G	238.7
DLinear [2023]	139.6K	44.91M	18.1
PatchTST [2023]	10.74M	25.87G	129.5
iTransformer [2024]	5.15M	1.65G	35.1
CycleNet/MLP	472.9K	134.84M	30.8
CycleNet/Linear	123.7K	22.42M	29.6
RCF part	53.9K	0	12.8

• Ablation study (Datasets with significant periodicity)

Dataset				Electr	icity				Traffic							
Horizon	9)6	1	92	33	36	72	20	9	96	19	92	3.	36	72	20
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MA
Linear	0.197	0.274	0.197	0.277	0.212	0.292	0.253	0.324	0.645	0.383	0.598	0.361	0.605	0.362	0.643	0.38
+ RCF	0.141	0.234	0.155	0.247	0.172	0.264	0.210	0.296	0.480	0.314	0.482	0.313	0.476	0.303	0.503	0.32
Improve	28.6%	14.6%	21.4%	10.8%	18.8%	9.5%	17.1%	8.7%	25.6%	18.0%	19.5%	13.2%	21.3%	16.2%	21.8%	16.1
MLP	0.175	0.259	0.181	0.265	0.197	0.282	0.240	0.317	0.500	0.325	0.496	0.321	0.509	0.325	0.542	0.34
+ RCF	0.136	0.229	0.152	0.244	0.170	0.264	0.212	0.299	0.458	0.296	0.457	0.294	0.470	0.299	0.502	0.31
Improve	22.2%	11.6%	15.9%	8.0%	13.6%	6.3 %	11.6%	5.7%	8.5 %	8.9%	7.9%	8.3%	7.7%	8.0%	7.3%	8.1 9
DLinear	0.195	0.278	0.194	0.281	0.207	0.297	0.243	0.331	0.649	0.398	0.599	0.372	0.606	0.375	0.646	0.39
+ RCF	0.143	0.240	0.156	0.253	0.171	0.270	0.204	0.302	0.506	0.317	0.499	0.317	0.512	0.325	0.545	0.34
Improve	26.6%	13.6%	19.7%	10.0%	17.4%	8.9%	16.3%	8.8%	22.1%	20.4%	16.6%	14.6%	15.4%	13.3%	15.6%	13.5
PatchTST	0.168	0.260	0.176	0.266	0.193	0.282	0.233	0.317	0.436	0.281	0.449	0.285	0.464	0.293	0.499	0.31
+ RCF	0.136	0.231	0.153	0.246	0.170	0.264	0.211	0.299	0.438	0.264	0.457	0.270	0.469	0.275	0.509	0.29
Improve	19.0%	11.0%	13.0%	7.6%	11.7%	6.6%	9.4%	5.7%	-0.5%	6.1%	-1.8%	5.5%	-1.0%	6.3%	-2.0%	6.1 9
iTransformer	0.148	0.240	0.162	0.253	0.178	0.269	0.225	0.317	0.395	0.268	0.417	0.276	0.433	0.283	0.467	0.30
+ RCF	0.136	0.231	0.153	0.247	0.168	0.263	0.194	0.287	0.415	0.263	0.440	0.271	0.456	0.278	0.491	0.29
Improve	8.1%	3.7%	5.6%	2.4%	5.8%	2.2%	13.8%	9.5%	-5.1%	1.9%	-5.5%	1.8%	-5.3%	1.8%	-5.1%	2.6 9

- The RCF technique significantly enhances the predictive performance of basic models like *Linear* and *MLP*.
 - For more advanced models, such as *PatchTST*, the RCF technique can also achieve further improvements..

CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns (NeurIPS 2024 Spotlight)

15

1. Motivations

2. Contributions

3. Method

4. Interpretability

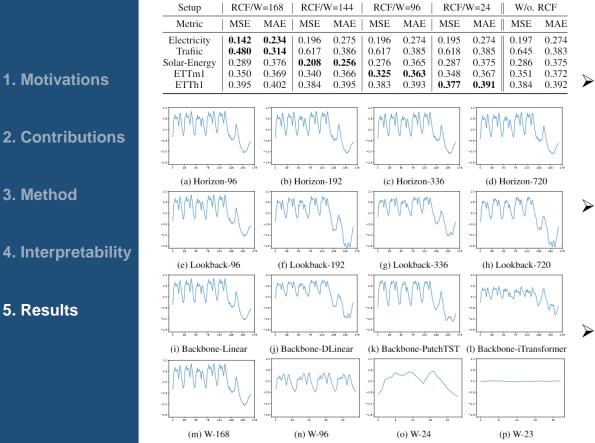
• Ablation study (Comparison of different STD techniques)

		CLi	near	LDL	inear	DLi	inear	SLi	inear			
M	odel		Linear)		Linear)		+Linear)		+Linear)	Linear		
M	etric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAI	
ETTh1	96 192	0.370 0.404	0.395 0.417	0.372	0.394 0.420	0.372	$\frac{0.394}{0.417}$	0.366 0.406	0.388	0.374	0.395	
ET	336 720	0.434 0.465	0.440 0.486	0.449 <u>0.476</u>	0.452 <u>0.492</u>	0.441 0.480	<u>0.442</u> 0.494	$\frac{0.440}{0.483}$	0.442 0.501	0.442 0.484	0.44 0.49	
	Avg	0.418	0.434	0.427	0.439	0.425	0.437	0.424	<u>0.436</u>	0.427	0.43	
ETTh2	96 192 336 720	0.308 0.382 <u>0.454</u> 0.661	0.369 0.416 <u>0.465</u> 0.575	0.292 0.372 0.479 0.675	0.357 0.409 0.480 <u>0.582</u>	0.297 0.398 0.496 0.694	0.362 0.426 0.489 0.592	0.340 0.379 0.404 0.720	0.389 <u>0.413</u> 0.437 0.600	0.305 0.385 0.458 0.691	0.36 0.41 0.47 0.59	
Í	Avg	0.451	0.456	0.455	0.457	0.471	0.467	0.460	0.460	0.460	0.46	
ETTm1	96 192 336 720	0.298 0.330 0.359 0.410	0.350 0.370 0.388 0.421	$\begin{array}{c c} 0.305 \\ \underline{0.335} \\ 0.372 \\ 0.445 \end{array}$	0.350 0.366 0.390 0.443	0.309 0.346 0.373 0.439	0.356 0.380 0.391 0.435	0.306 0.339 0.372 <u>0.430</u>	0.349 0.370 <u>0.389</u> <u>0.426</u>	$\begin{array}{c} \underline{0.305} \\ 0.338 \\ \underline{0.371} \\ 0.433 \end{array}$	$ \begin{array}{r} 0.34 \\ 0.36 \\ 0.38 \\ 0.42 \end{array} $	
	Avg	0.349	0.382	0.365	0.387	0.367	0.390	0.362	<u>0.383</u>	0.362	0.38	
ETTm2	96 192 336 720	0.164 0.225 0.271 <u>0.406</u>	0.260 0.304 0.332 0.423	0.165 0.240 0.290 0.396	0.257 0.318 0.349 0.419	0.165 0.232 0.295 0.427	0.257 0.310 0.356 0.442	0.177 0.246 0.309 0.427	0.272 0.325 0.370 0.440	$ \begin{array}{r} 0.166 \\ \underline{0.228} \\ \underline{0.275} \\ 0.407 \end{array} $	0.25 <u>0.30</u> <u>0.33</u> 0.42	
	Avg	0.266	0.330	0.273	0.336	0.280	0.341	0.290	0.352	0.269	0.33	
Electricity	96 192 336 720	0.131 0.145 0.160 0.193	0.228 0.242 0.260 0.292	$ \begin{array}{r} 0.140 \\ \underline{0.154} \\ 0.170 \\ \underline{0.204} \end{array} $	$\frac{0.237}{0.250}\\ \frac{0.268}{0.300}$	$ \begin{array}{r} \underline{0.140} \\ 0.154 \\ \underline{0.169} \\ 0.204 \\ \end{array} $	0.237 0.250 0.268 0.301	0.148 0.159 0.173 0.207	0.243 0.254 0.271 0.303	0.140 0.154 0.170 0.204	0.23 0.25 0.26 0.30	
	Avg	0.157	0.255	<u>0.167</u>	<u>0.264</u>	0.167	0.264	0.172	0.268	0.167	0.26	
Solar-Energy	96 192 336 720	0.192 0.218 0.231 0.239	0.251 0.258 0.262 0.265	$\begin{array}{c} \underline{0.222} \\ \underline{0.249} \\ \underline{0.268} \\ 0.271 \end{array}$	$\begin{array}{r} \underline{0.294} \\ 0.315 \\ 0.326 \\ 0.327 \end{array}$	0.222 0.250 0.270 0.272	0.298 0.312 0.335 <u>0.327</u>	0.226 0.252 0.270 0.271	0.296 0.312 0.326 0.327	0.224 0.250 0.269 0.270	0.30 <u>0.31</u> <u>0.32</u> 0.33	
Ň	Avg	0.220	0.259	0.253	0.316	0.254	0.318	0.255	0.315	0.253	0.31	
Traffic	96 192 336 720	0.397 0.412 0.426 0.456	0.275 0.282 0.290 0.308	$\begin{array}{c c} 0.411 \\ 0.423 \\ \underline{0.436} \\ 0.466 \end{array}$	0.285 0.288 0.296 0.315	$\begin{array}{c} 0.411 \\ \underline{0.423} \\ 0.436 \\ 0.466 \end{array}$	0.284 0.289 0.296 0.316	0.414 0.425 0.436 <u>0.464</u>	$\begin{array}{r} \underline{0.281}\\ \underline{0.285}\\ \underline{0.293}\\ \underline{0.310} \end{array}$	$ \begin{array}{c} 0.411 \\ 0.423 \\ 0.437 \\ 0.466 \end{array} $	0.28 0.28 0.29 0.31	
	Avg	0.423	0.289	0.434	0.296	<u>0.434</u>	0.296	0.435	<u>0.292</u>	0.434	0.29	
Weather	96 192 336	0.174 0.218 0.262	0.240 0.279 0.314	0.174 0.215 0.263 0.325	0.235 0.271 0.315 0.365	0.175 0.215 0.261 0.324	0.237 <u>0.273</u> 0.311 0.363	0.176 0.218 0.265 0.325	0.235 0.277 0.316	0.175 0.218 0.262 0.262	0.23 0.27 <u>0.31</u> 0.36	
We	720	0.328	0.367	0.525	0.505	0.524	0.505	0.323	<u>0.363</u>	0.327	0.50	

- The RCF technique can essentially be considered a type of Seasonal-Trend Decomposition (STD) method.
- RCF significantly outperforms other existing STD methods, particularly on datasets with strong periodicity.
- RCF enables models to overcome the limitations of finite-length look-back windows, as periodic components are globally estimated from the entire training set.

16

CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns (NeurIPS 2024 Spotlight)

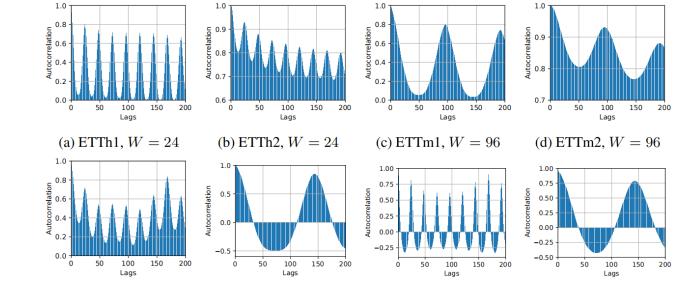

1. Motivations

2. Contributions

3. Method

4. Interpretability

Further analysis (The Impact of hyperparameters W)


3. Method

5. Results

When the length of the learnable recurrent cycles (W) is correctly set to match the **inherent periodicity** of the data,

- RCF can effectively **learn the correct** periodic patterns, leading to significant performance improvements.
- RCF is **robust** to other hyperparameters.

17

(e) Electricity, W = 168 (f) Solar-Energy, W = 144 (g) Traffic, W = 168 (h) Weather, W = 144

> **Determine** the cycle length *W* through **Autocorrelation Function** (**ACF**):

$$ACF = \frac{\sum_{t=1}^{N-k} (x_t - \bar{x})(x_{t+k} - \bar{x})}{\sum_{t=1}^{N} (x_t - \bar{x})^2}$$

> The hyperparameter W should be set to the *lag* corresponding to the **observed maximum peak**.

18

1. Motivations

2. Contributions

3. Method

4. Interpretability

Thank You!

Code

Our Team

https://github.com/ACAT-SCUT