Axioms for AI Alignment from Human Feedback

Luise Ge¹, Daniel Halpern², Evi Micha², Ariel D. Procaccia², Itai Shapira², Yevgeniy Vorobeychik¹, Junlin Wu¹


¹ Washington University in St. Louis, ² Harvard University

Introduction

● AI alignment

• Reinforcement Learning with Human Feedback (RLHF)

Heterogeneous Preferences

Our Model

- Set of "alternatives" / {prompt, response}
- Each alternative is associated feature vector $x_a \in \mathbb{R}^d$
- Dataset of pairwise compressions
- Learn a parameterized reward $\widehat{r_{\theta}} : \mathbb{R}^d \to \mathbb{R}$

• Given a loss
$$\ell$$
, minimize:

$$L(\theta) = \sum_{a \neq b} n_{a > b} \cdot \ell(r_{\theta}(b) - r_{\theta}(a))$$

- Set of participants/"voters"
- Each has their own unique reward
- Assume the reward model is **linear**: $\mathbb{H} = \{ \langle \theta | \cdot \rangle | \ \theta \in \mathbb{R}^p \}$
- understanding the relationship between individual rewards and the optimal reward

The Axiomatic approach

Axiomatic approach to study preference aggregation

Pareto Optimality (PO) If for every voter
$$r_{\theta_i}(a) \ge r_{\theta_i}(b)$$
 then
 $r_{\theta^*}(a) \ge r_{\theta^*}(b)$

Pairwise Majority Consistency (PMC) If exist an ordering of the alternatives c_1 > $c_2 \dots > c_m$ such that c_i is preferred to c_j by a majority of voters whenever i> j, then $r_{\theta^*}(c_i) \ge r_{\theta^*}(c_j)$ if possible

Many others we can borrow from SC: monotonicity, majority consistency...

Theorem. All reasonable loss-based aggregation method fail both PO and PMC

Theorem. There exist a linear aggregation rules that satisfy both PO and PMC

- Growing Complexity Highlights RLHF's Limitations
- Need for Comparative Framework in Developing Robust Alignment Methods