

FasterDiT: Towards Faster Diffusion Transformers Training without Architecture Modification

Jingfeng Yao, Cheng Wang, Wenyu Liu, Xinggang Wang*

Highlights

- Interpreting the performance robustness with the perspective of the Probability Density Function (PDF) of SNR during training.
- Conducting extensive experiments and report about one hundred experiment results in our paper to empirically analyze the association between training performance and robustness with PDF.
- Introducing a new supervision method for velocity predictionbased approaches.

Problem Source

Probability Density Function of SNR during Training

• A tool to analyse the SNR

 $f_s(t)$ denotes the timestep sampling function. $f_l(t)$ denotes the loss weight function. $f_t(t)$ is to unify them into a single distribution of t.

$$SNR(t) = \frac{K(I)}{\text{std}^2} \frac{\text{std}^2 \alpha_t^2}{\sigma_t^2} \approx C(I) \frac{\text{std}^2 \alpha_t^2}{\sigma_t^2}$$
$$f_t(t) = \frac{f_l(t) f_s(t)}{\int_0^1 f_l(t) f_s(t) dt}$$
$$f_Y(y) = f_t(g(y)) \left| \frac{d}{dy} g(y) \right|$$

• Different data signal intensities lead to different training effects.

- Different schedules exhibit significant differences in data robustness.
- Schedule with a broad SNR focus could have a robust performance.
- The optimal SNR ranges for different schedules seem to be similar

• There is a trade-off between performance and robustness.

- Flow matching with v-prediction gets more robust performance.
- The trade-off still exists in flow matching with v-prediction.

Improving DiT Training

- Improving Single Step Supervision
- we not only use the Mean Squared Error (MSE) to supervise velocity predictions but also apply cosine similarity to further supervise the directionality of velocity.

$$L_d = 1 - \frac{1}{HW} \sum_{h=0}^{H-1} \sum_{w=0}^{W-1} \frac{v_{gt}^{(h,w)} \cdot v_{pred}^{(h,w)}}{|v_{gt}^{(h,w)}| |v_{pred}^{(h,w)}|}$$

Results

Method	Model	Training Iters	FID↓	sFID↓	IS↑	Prec. ↑	Rec. ↑
BigGAN [<mark>4]</mark>	BigGAN-deep	-	6.95	7.36	171.4	0.87	0.28
MaskGIT [<mark>6</mark>]	MaskGIT	1387k×256	6.18	-	182.1	-	-
ADM-G [14]	ADM	1980k×256	4.59	5.25	186.70	0.82	0.52
CDM 23	CDM	-	4.88	-	158.71	-	-
RIN 26	RIN	-	3.42	-	-	-	-
Simple Diffusion [25]	U-Net	2000k×512	3.76	-	-	-	-
Simple Diffusion	U-ViT-L	500k×2048	2.77	-	-	-	-
LDM-4-G [40]	LDM	178k×1200	3.60	-	247.67	0.87	0.48
U-ViT-G [2]	U-ViT	300k×1024	3.40	-	-	-	-
StyleGAN [42]	StyleGAN-XL	-	2.30	4.02	265.12	0.78	0.53
MDT-G [18]	MDT	2500k×256	2.15	4.52	249.27	0.82	0.58
DiT [37]	DiT-XL/2	7000k×256	9.62	6.85	121.50	0.67	0.67
SiT [32]		7000k×256	8.61	6.32	131.65	0.68	0.67
FasterDiT		1000k ×256	8.72	5.23	121.17	0.68	0.67
		2000k ×256	7.91	5.46	131.27	0.67	0.69
DiT (<i>cfg</i> =1.5) [37]		7000k×256	2.27	4.60	278.24	0.83	0.57
SiT (<i>cfg</i> =1.5) [32]		7000k×256	2.06	4.50	270.27	0.82	0.59
FastarDiT (afa-15)	DII-AL/2	1000k ×256	2.30	4.80	249.34	0.82	0.58
FasterDIT $(cjg=1.3)$		2000k ×256	2.03	4.63	263.95	0.81	0.60

Results

index:99 goose

