

Delta-CoMe: Training-Free Delta-Compression with Mixed-Precision for Large Language Models

Delta-CoMe

Background: Delta obtained through fine-tune model and base model (et. Finetuned - base) can be compressed.

Related Work: Most recently, Bitdelta^[1] compress Delta into 1-bit, and perform post-training to restore performance in several text benchmarks.

Existing Issues: Bitdelta failed in math, code which needs alignment that is of great significance and needs great efforts.

Method

- Delta-CoMe combine low-rank and low-bit
- Empirically, employing low-rank Delta can still retain down-stream performance
- Observing long-tail distribution after low-rank, Delta-CoMe mix-precision compression, assigning high bits to for singular vectors corresponding to larger singular values.

Figure 1: Left: illustration of BitDelta (Liu et al., 2024b), which employs 1-bit quantization for all the delta weights. Middle: illustration of low-rank compression (Ryu et al., 2023b), retaining the top-k singular values and the corresponding singular vectors. **Right**: illustration of the proposed Delta-CoMe method, which represents the singular vectors of larger singular values using high-bit vectors while compressing the singular vectors of smaller singular values into low-bit representations. This method is inspired by the long-tail distribution of singular values in delta weights.

Figure 2: Illustration of Delta-CoMe, where we utilize varying bit-widths for singular vectors with different singular values. Singular vectors corresponding to larger singular values are assigned higher bit-widths. For extremely small singular values, we omit the singular vectors (i.e., 0-bit).

Method

Empirically, delta has low-rank nature

$$\Delta \mathbf{W} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top},$$

To minimize quant error

$$\hat{\mathbf{W}} = ext{Quant}_k(\mathbf{W}, \mathbf{X}) = rgmin_{\hat{\mathbf{W}}} ||\mathbf{W}\mathbf{X} - \hat{\mathbf{W}}\mathbf{X}||^2, \ \hat{\mathbf{W}}$$

Based on long-tail distribution distribution, perform mixed-quant

$$egin{aligned} \hat{\mathbf{V}}[:,r_{ ext{begin}}:r_{ ext{end}}]^{ op} &= ext{Quant}_k(\mathbf{V}[:,r_{ ext{begin}}:r_{ ext{end}}]^{ op},\mathbf{X}), \ \hat{\mathbf{U}}[:,r_{ ext{begin}}:r_{ ext{end}}] &= \ ext{Quant}_k(\mathbf{U}[:,r_{ ext{begin}}:r_{ ext{end}}],\mathbf{\Sigma}[r_{ ext{begin}}:r_{ ext{end}},r_{ ext{begin}}:r_{ ext{end}}]\hat{\mathbf{V}}[:,r_{ ext{begin}}:r_{ ext{end}}]^{ op}\mathbf{X}). \end{aligned}$$

Average Bits

$$rac{h_{
m out}+h_{
m in}}{h_{
m out}h_{
m in}} \sum_{i=1}^{3} k^{(i)} (r_{
m end}^{(i)}-r_{
m begin}^{(i)}).$$

Loss-driven search

Table 2: Comparison of different mixed-precision strategies.

# Precision	Setting	GSM8K
	1	45.6
	2	50.6
Single	3	51.8
Single	4	51.6
	8	47.8
	16	43.3
	16 + 3	52.5
Doublo	8 + 3	53.1
Double	4 + 3	52.2
	3 + 2	52.3
	16 + 8 + 3	53.2
Triple	8 + 4 + 3	52.2
	8 + 3 + 2	53.6

Experimental Result

- Llama-2, Mistral, Llama-3 backbones of 7B and 13B sizes
- Math, code , chat and Multi-modal tasks
- All models share the same setting, illustrating generalizability

Table 3: The performance of different delta-compression methods on 7B aligned models.

Method α		WIZARDMATH		MAGICODERS-CL		LLAMA-2-CHAT		LLAVA-V1.5		Ave.
		GSM8K	MATH	HumanEval	MBPP	TruthfulQA	SafetyBench	GQA	TextVQA	
Backbone	1	11.0	2.9	38.4	47.6	41.7	38.9	n/a	n/a	n/a
Aligned	1	55.2	10.9	70.7	69.2	59.5	44.6	62.0	58.2	53.5
Low-Rank	1/16	43.2	8.0	56.7	65.7	55.4	42.5	57.7	53.3	47.8
BitDelta	1/16	45.6	8.6	57.3	65.9	59.3	41.1	59.7	56.9	49.3
Delta-CoMe	1/16	53.6	10.3	67.1	67.9	59.8	47.0	61.7	58.5	53.2

Table 4: The performance of different delta-compression methods on 13B aligned models.

Method α		WIZARDMATH		MAGICODERS-CL		LLAMA-2-CHAT		LLAVA-V1.5		Ave.
		GSM8K	MATH	HumanEval	MBPP	TruthfulQA	SafetyBench	GQA	TextVQA	
Backbone	1	17.8	3.9	43.3	49.0	55.0	37.3	n/a	n/a	n/a
Aligned	1	63.9	14.0	60.4	66.9	62.7	43.9	63.2	61.3	54.5
Low-Rank	1/16	54.2	9.4	53.0	66.9	62.3	43.7	60.2	58.3	51.0
BitDelta	1/16	54.8	10.6	51.8	64.2	62.6	41.6	60.9	60.3	50.9
Delta-CoMe	1/16	58.9	12.8	57.9	67.2	62.9	44.1	63.1	61.2	53.5

Table 5: Results on other representative backbones. The backbone of OPENCHAT-3.5-0106 (Wang et al., 2023) is MISTRAL-7B-V0.1 (Jiang et al., 2023). Both MISTRAL-7B-V0.1 and LLAMA-3-8B are widely-used open-source LLMs.

Method	α		Openchat-3.5-0106			LLAMA-3-8B-INSTRUCT				Ave.
		GSM8K	HumanEval	TruthfulQA	SafetyBench	GSM8K	HumanEval	TruthfulQA	SafetyBench	
Backbone	1	52.2	28.7	61.0	42.1	44.8	33.5	43.6	43.9	43.7
Aligned	1	77.1	73.2	78.4	61.0	78.5	61.6	68.2	51.6	68.7
Low-Rank	1/16	50.5	52.4	76.9	49.0	68.3	46.3	67.5	51.3	57.8
BitDelta	1/16	70.3	54.9	78.4	50.0	67.6	56.1	68.6	50.2	62.0
Delta-CoMe	1/16	74.8	59.8	78.9	62.6	77.1	60.4	69.1	51.8	66.8

Delta-CoMe vs Delta-Tuning

- Delta-tuning uses downstream data to train backbone, delta-compression uses existing aligned models to enhance the backbone.
- Under similar storage budget when inference, Delta compression outperform conventional delta-tuning significantly

Table 6: Comparison between LoRA and delta-compression methods.

Method	Ma	th	Co	Ave.	
	GSM8K	MATH	HumanEval	HuamnEval	
Backbone	11.0	2.9	10.5	17.7	10.5
Aligned	65.4	18.6	43.2	44.9	43.0
LoRA	58.3	11.4	17.6	31.8	29.8
Low-Rank	54.8	5.5	26.2	42.6	32.3
BitDelta	47.8	10.7	26.2	41.9	31.7
Delta-CoMe	65.1	18.0	39.6	44.9	41.9

Inference Speed and Storage

- Using Triton achieving about 3x speed up than Pytorch
- Saves GPU memory significantly achieving loading 50x models on a single GPU

Num. of Models	w/o DC	w/ DC
2	26.67	15.54
4	52.24	18.17
8	OOM	23.44
16	DOM	33.95
32	OOM	55.06
50	OOM	78.70

(b) Effect of hidden size.

Delta-CoMe with Low-bit Backbone

• Besides the 16-bit backbone, the 4-bit backbone is also widely used.

• Delta-CoMe can also maintain performance with a 4-bit backbone.

Precision	Backbone	Tasks	Delta
A DIT DACKDONE	WizardMath 4-bit	49.36	n/a
4-BII BACKBONE	Llama2 4-bit + 1bit delta	47.01	-2.3
16 DIT DACKDONE	WizardMath 16-bit	55.2	n/a
10-BII BACKBONE	Llama2 16-bit + 1bit delta	53.6	-1.6
A DIT DACKDONE	Magicoder 4-bit	66.2	n/a
4-BII BACKBONE	Codellama-python 4-bit + 1bit delta	65.4	-0.8
16 DIT DACKDONE	Magicoder 16-bit	66.7	n/a
10-BIT BACKBONE	Codellama-python 16-bit + 1bit delta	67.2	+0.3
A DIT DACKDONE	WizardMath 4-bit	49.36	n/a
4-BII BACKBONE	Llama2 4-bit + 1bit delta	47.01	-2.3
16 DIT DACKDONE	WizardMath 16-bit	55.2	n/a
10-BII BACKBONE	Llama2 16-bit + 1bit delta	53.6	-1.6
A DIT DACKDONE	Llava-v1.5 4-bit	57.68	n/a
4-BII BACKBONE	Vicuna 4-bit + 1bit delta	57.58	-0.1
16 DIT DACKDONE	Llava-v1.5 16-bit	58.2	n/a
IU-DII DACKBUNE	Vicuna 16-bit + 1bit delta	58.5	+0.3

Conclusion

- Delta-CoMe achieves 1-bit compression and near-lossless performance across various typical tasks, including math, code, chat, and multi-modal tasks.
- Delta-CoMe can save more than 10x GPU memory and our kernel has achieved 3x speedup than Pytorch which can be applied into multi-tenant settings.
- However, the kernel is trivial, Wei et al. (2024) and Guo et al. (2024) have implemented more advanced kernels. We can draw on their methods to achieve higher acceleration ratios.