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Delta-CoMe
Background: Delta obtained through fine-tune model and base model (et. Finetuned - base) can 
be compressed.

Related Work: Most recently, Bitdelta[1] compress Delta into 1-bit，and perform post-training to 
restore performance in several text benchmarks.

Existing Issues: Bitdelta failed in math, code which needs alignment that is of great significance 
and needs great efforts. 

BitDelta: Your Fine-Tune May Only Be Worth One Bit

Figure 1. Overview of BitDelta. BitDelta applies 1-bit quantization to the weight delta between fine-tuned and base models. For each
weight matrix, we quantize its delta as its sign bits and a trainable high-precision scale factor. The scale factor is initialized to achieve
the best approximation error in L2 norm and further refined with a few distillation steps. BitDelta shows minimal degradation in model
performance and reduces memory consumption in multi-tenancy serving by representing multiple fine-tuned models with a single
high-precision base model and multiple 1-bit deltas.

are effectively high-rank).

It is also attractive to approximate general deltas with low-
rank matrices post-training. However, experimental results
show that this is challenging (Table 1), as deltas from full
parameter fine-tunes tend to be fairly high-rank (Figure 2).

Figure 2. CEV plot of a 4096⇥ 4096 weight delta between Llama
2-7B and Vicuna-7B v1.5. Deltas from full parameter fine-tuning
are fairly high rank, making low-rank approximations difficult.

Instead, we draw from the insight that motivates PEFT meth-
ods in general: Given the higher computational demand of
pre-training, it’s intuitive to assume that fine-tuning adds
less new information to the model, and is thus much more
compressible. Indeed, we find that we can efficiently quan-

tize the delta to merely 1 bit with almost no performance
drop. We propose BitDelta, an efficient post-training quanti-
zation (PTQ) solution that acts on the weight delta between
a fine-tuned model and its underlying base model.

BitDelta has two stages: 1) We quantize the delta of each
weight matrix into a scaling factor multiplied by a binary
matrix. Specifically, we take the sign of the delta to form
the binary matrix and initialize the scaling factor as the
average of the absolute values of the delta, which mini-
mizes L2 norm. 2) We further calibrate the scaling factors
through model distillation over a small calibration dataset
while keeping the binary matrices frozen. Despite the small
number of trainable parameters and training steps, we find
that this distillation process is effective in further recovering
model quality. BitDelta is extremely efficient compared
to other quantization methods; we are able to compress
70B models in roughly 10 minutes, whereas methods like
GPTQ (Frantar et al., 2022) and AWQ (Lin et al., 2023) may
take multiple GPU hours. Our experiments over 17 popu-
lar fine-tuned models affirm that BitDelta can be applied
across various model types and sizes with minimal impact
on performance.

BitDelta opens up opportunities to efficiently serve multiple
fine-tuned models with shared servers: By only storing a
single full-precision base model, and (dynamically) load-
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Method

• Delta-CoMe combine low-rank and low-bit

• Empirically, employing low-rank Delta can still retain down-stream performance

• Observing long-tail distribution after low-rank,  Delta-CoMe mix-precision compression, assigning 
high bits to for singular vectors corresponding to larger singular values. 
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Figure 2: Illustration of Delta-CoMe, where we utilize varying bit-widths for singular vectors with
different singular values. Singular vectors corresponding to larger singular values are assigned higher
bit-widths. For extremely small singular values, we omit the singular vectors (i.e., 0-bit).

Wei et al., 2023; Liu et al., 2024a). In some practical scenarios, as mentioned in Section 1, we may123

need to deploy multiple LLMs at the same time. Formally, we should store and deploy a series of124

aligned LLMs
n
✓(1)
a , · · · ,✓(N)

a

o
, where N is the number of aligned models. The total size of the125

group of aligned models is N ⇥M , where M is the size of one model. We use � to represent the126

delta weights between the aligned model and the backbone model, which is given by127

�(n) = ✓(n)
a � ✓b, (1)

where ✓(n) is the n-th aligned LLM. Note that the sizes of �(n), ✓(n)
a , and ✓b are the same.128

Delta-compression aims to compress the delta weights �(n) into �̂(n), where the latter has signifi-129

cantly fewer parameters. After delta-compression, we can only maintain one backbone model and130

N compressed delta models:
n
✓b, �̂(1), · · · , �̂(N)

o
. The total size is decreased from N ⇥M to131

(1 + ↵N) ⇥M , where ↵ is the compression ratio. During inference, we can restore each aligned132

LLM in the following way:133

✓̂(n)
a = ✓b + �̂(n). (2)

For a good delta-compression method, we expect it can achieve a smaller ↵, while making ✓̂(n)
a attain134

comparable performance with ✓(n)
a . BitDelta (Liu et al., 2024b), to our knowledge, is the most recent135

study that successfully quantizes delta weights into 1-bit, which means that ↵ = 1/16 when the136

original aligned model is represented by FP16 or BF16. In this work, we propose to improve the137

performance of delta-compression methods by inducing mixed-precision quantization, which will be138

detailed in the following sub-sections.139

3.2 Delta Decomposition140

Previous works have investigated mixed-precision model compression methods at the token (Shen141

et al., 2024) or layer level (Bablani et al., 2023). For delta-compression, we propose employing142

mixed-precision for different singular vectors. We first use the SVD algorithm to decompose each143

delta matrix:144

�W = U⌃V>, (3)
where �W 2 Rhout⇥hin , U 2 Rhout⇥hout , ⌃ 2 Rhout⇥hin , V 2 Rhin⇥hin . Intuitively, the singular145

vectors associated with larger singular values have a greater impact on the approximation of the delta146

matrix �W, we thus spend more bits for these vectors to reduce the quantization error.147
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Abstract

Fine-tuning is a crucial process for adapting large language models (LLMs) to1

diverse applications. In certain scenarios, such as multi-tenant serving, deploying2

multiple LLMs becomes necessary to meet complex demands. Recent studies3

suggest decomposing a fine-tuned LLM into a base model and corresponding4

delta weights, which are then compressed using low-rank or low-bit approaches5

to reduce costs. In this work, we observe that existing low-rank and low-bit6

compression methods can significantly harm the model performance for task-7

specific fine-tuned LLMs (e.g., WizardMath for math problems). Motivated by the8

long-tail distribution of singular values in the delta weights, we propose a delta9

quantization approach using mixed-precision. This method employs higher-bit10

representation for singular vectors corresponding to larger singular values. We11

evaluate our approach on various fine-tuned LLMs, including math LLMs, code12

LLMs, chat LLMs, and even VLMs. Experimental results demonstrate that our13

approach performs comparably to full fine-tuned LLMs, surpassing both low-rank14

and low-bit baselines by a considerable margin. Additionally, we show that our15

method is compatible with various backbone LLMs, such as Llama-2, Llama-3,16

and Mistral, highlighting its generalizability.17

1 Introduction18

Figure 1: Left: illustration of BitDelta (Liu et al., 2024b), which employs 1-bit quantization for all
the delta weights. Middle: illustration of low-rank compression (Ryu et al., 2023b), retaining the
top-k singular values and the corresponding singular vectors. Right: illustration of the proposed
Delta-CoMe method, which represents the singular vectors of larger singular values using high-bit
vectors while compressing the singular vectors of smaller singular values into low-bit representations.
This method is inspired by the long-tail distribution of singular values in delta weights.

Large language models (LLMs) (Touvron et al., 2023; Jiang et al., 2023) are increasingly becoming19

the standard for a wide range of downstream tasks (Luo et al., 2023a; Yu et al., 2023; Wei et al.,20
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Method

Loss-driven search

Table 1: Selected backbone and aligned models for the examined four tasks.

Task 7B Models 13B Models
Backbone Aligned Backbone Aligend

Math LLAMA-2 WIZARDMATH-V1.0 LLAMA-2 WIZARDMATH-V1.0
Code CODELLAMA-PY MAGICODERS-CL CODELLAMA-PY WIZARDCODER-PY-V1.0
Chat LLAMA-2 LLAMA-2-CHAT LLAMA-2 LLAMA-2-CHAT
Multi-Modal VICUNA-V1.5 LLAVA-V1.5 VICUNA-V1.5 LLAVA-V1.5

4.3 Baselines189

We employ two representative baselines, including SVD-based low-rank compression and Bit-190

Delta (Liu et al., 2024b). For the low-rank baseline, we re-implement the method, while for BitDelta,191

we use the code open-sourced by the authors.3 All methods are evaluated on NVIDIA A100 GPUs.192

5 Experimental Results193

5.1 Exploration of Mixed-Precision Strategies194 Table 2: Comparison of different mixed-
precision strategies.

# Precision Setting GSM8K

Single

1 45.6
2 50.6
3 51.8
4 51.6
8 47.8
16 43.3

Double
16 + 3 52.5
8 + 3 53.1
4 + 3 52.2
3 + 2 52.3

Triple
16 + 8 + 3 53.2
8 + 4 + 3 52.2
8 + 3 + 2 53.6

To determine which bit-width to use and how many195

singular vectors to quantize, we conduct a preliminary196

experiment using different mixed-precision strategies.197

We examine three types of strategies: single-precision,198

double-precision, and triple-precision settings. The size199

of the compressed delta remains consistent across all200

settings. For single-precision compression, we set rbegin201

to 0, and rend is set to guarantee that the delta size is the202

same as BitDelta (Liu et al., 2024b). In other words, the203

compression ratio ↵ for all settings is 1/16. Formally, for204

a delta matrix �W 2 Rhout⇥hin , rbegin and rend are set205

to satisfy the following equation:206

k⇥ (rend � rbegin)(hout + hin) = 16⇥↵houthin, (6)

where ↵ is set to 1/16 in our experiments, which is the207

same as BitDelta. In double-precision settings, rbegin208

and rend are set to 0 and 2, respectively, for the first precision. For the second precision, rbegin209

is set to 2, and rend is adjusted so that the total delta size is 1/16 of the uncompressed delta. In210

triple-precision settings, rbegin and rend are set to 0 and 2, respectively, for the first precision. rbegin211

and rend are set to 2 and 34, respectively, for the second precision. For the third precision, rbegin is212

set to 34, and rend is adjusted so that the total delta size is 1/16 of the uncompressed delta. Since the213

diagonal matrix ⌃ occupies little storage, the averaged bit-width for triple-precision compression is214

approximately215

hout + hin

houthin

3X

i=1

k(i)(r(i)end � r(i)begin). (7)

We conduct experiments on the math task, and the results are shown in Table 2. We find that the216

3-bit setting performs best among the single-precision settings. Therefore, we keep the 3-bit setting217

and add other bit-widths to form double-precision settings. Among the double-precision settings,218

"8+3" achieves the highest score, which is then combined with an additional bit-width to form219

triple-precision settings. We find that the best double-precision setting can outperform the best220

single-precision setting, and the best triple-precision setting achieves the highest score across all the221

examined settings. We use “8+3+2” as the default setting in the following experiments.222

3https://github.com/FasterDecoding/BitDelta.
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Experimental Result

• Llama-2, Mistral, Llama-3 backbones of 7B and 13B sizes

• Math, code , chat and Multi-modal tasks

• All models share the same setting, illustrating generalizability
5.2 Main Results223

Tables 3 and 4 show the performance of different delta-compression methods on 7B and 13B224

models, respectively. Across all tasks, Delta-CoMe outperforms both baselines. While BitDelta (Liu225

et al., 2024b) can achieve near lossless performance on chat models, it significantly degrades226

the performance of math and code LLMs, a phenomenon not investigated by Liu et al. (2024b).227

Surprisingly, our method achieves good performance in the delta-compression of VLMs. To our228

knowledge, we are the first to investigate delta-compression for VLMs.229

Table 3: The performance of different delta-compression methods on 7B aligned models.

Method ↵
WIZARDMATH MAGICODERS-CL LLAMA-2-CHAT LLAVA-V1.5 Ave.
GSM8K MATH HumanEval MBPP TruthfulQA SafetyBench GQA TextVQA

Backbone 1 11.0 2.9 38.4 47.6 41.7 38.9 n/a n/a n/a
Aligned 1 55.2 10.9 70.7 69.2 59.5 44.6 62.0 58.2 53.5

Low-Rank 1/16 43.2 8.0 56.7 65.7 55.4 42.5 57.7 53.3 47.8
BitDelta 1/16 45.6 8.6 57.3 65.9 59.3 41.1 59.7 56.9 49.3
Delta-CoMe 1/16 53.6 10.3 67.1 67.9 59.8 47.0 61.7 58.5 53.2

Table 4: The performance of different delta-compression methods on 13B aligned models.

Method ↵
WIZARDMATH MAGICODERS-CL LLAMA-2-CHAT LLAVA-V1.5 Ave.
GSM8K MATH HumanEval MBPP TruthfulQA SafetyBench GQA TextVQA

Backbone 1 17.8 3.9 43.3 49.0 55.0 37.3 n/a n/a n/a
Aligned 1 63.9 14.0 60.4 66.9 62.7 43.9 63.2 61.3 54.5

Low-Rank 1/16 54.2 9.4 53.0 66.9 62.3 43.7 60.2 58.3 51.0
BitDelta 1/16 54.8 10.6 51.8 64.2 62.6 41.6 60.9 60.3 50.9
Delta-CoMe 1/16 58.9 12.8 57.9 67.2 62.9 44.1 63.1 61.2 53.5

5.3 Results on More Backbone Models230

Table 5: Results on other representative backbones. The backbone of OPENCHAT-3.5-0106 (Wang
et al., 2023) is MISTRAL-7B-V0.1 (Jiang et al., 2023). Both MISTRAL-7B-V0.1 and LLAMA-3-8B
are widely-used open-source LLMs.

Method ↵
OPENCHAT-3.5-0106 LLAMA-3-8B-INSTRUCT Ave.

GSM8K HumanEval TruthfulQA SafetyBench GSM8K HumanEval TruthfulQA SafetyBench

Backbone 1 52.2 28.7 61.0 42.1 44.8 33.5 43.6 43.9 43.7
Aligned 1 77.1 73.2 78.4 61.0 78.5 61.6 68.2 51.6 68.7

Low-Rank 1/16 50.5 52.4 76.9 49.0 68.3 46.3 67.5 51.3 57.8
BitDelta 1/16 70.3 54.9 78.4 50.0 67.6 56.1 68.6 50.2 62.0
Delta-CoMe 1/16 74.8 59.8 78.9 62.6 77.1 60.4 69.1 51.8 66.8

To investigate the generalization abilities of the delta-compression methods, we conduct experiments231

on aligned models based on other representative backbone LLMs. For additional backbones, we232

utilize MISTRAL-7B-V0.1 (Jiang et al., 2023) and LLAMA-3-8B4. The corresponding aligned233

models are OPENCHAT-3.5-0106 (Wang et al., 2023) and LLAMA-3-8B-INSTRUCT, respectively.234

As shown in Table 5, our proposed Delta-CoMe method maintains superior performance over the two235

baselines, demonstrating its generalization ability.236

4https://huggingface.co/meta-llama/Meta-Llama-3-8B.
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Delta-CoMe vs Delta-Tuning

l Delta-tuning uses downstream data to train backbone, delta-compression uses existing 
aligned models to enhance the backbone.

l Under similar storage budget when inference, Delta compression outperform conventional 
delta-tuning significantly

5.4 Delta-Compression vs. Delta-Tuning237

A closely related area to delta-compression is delta-tuning. While delta-tuning primarily aims to238

reduce the training cost of LLMs, delta-compression focuses on reducing the storage and inference239

cost for multi-model serving. It remains unclear whether delta-compression outperforms delta-tuning240

when using the same delta size. To investigate this, we trained LoRA (Hu et al., 2022) modules for241

all model parameters to compare delta-compression with delta-tuning. We set the LoRA rank to 128242

and the scale factor to 16, using a cosine warmup schedule with a warmup ratio of 0.04 and a peak243

learning rate of 1e-4. For each task, we trained the LoRA for 3 epochs. For mathematical LoRA,244

the training dataset is from Yu et al. (2023), which consists of 395K training examples. For code245

LoRA, the training set is from Wei et al. (2023), which contains 186K training examples. For a fair246

comparison, we fine-tune all model parameters using the same dataset as used for LoRA training. We247

then apply different delta-compression methods to both the fine-tuned mathematical and code LLMs.248

Table 6: Comparison between LoRA and delta-compression
methods.

Method Math Code Ave.
GSM8K MATH HumanEval HuamnEval

Backbone 11.0 2.9 10.5 17.7 10.5
Aligned 65.4 18.6 43.2 44.9 43.0

LoRA 58.3 11.4 17.6 31.8 29.8
Low-Rank 54.8 5.5 26.2 42.6 32.3
BitDelta 47.8 10.7 26.2 41.9 31.7
Delta-CoMe 65.1 18.0 39.6 44.9 41.9

Table 6 shows the results of both249

delta-tuning and delta-compression250

methods. The results reveal that251

LoRA achieves superior performance252

compared to the low-rank com-253

pression approach and BitDelta in254

the mathematical task. However,255

when it comes to the coding task,256

LoRA exhibits lower performance257

than both low-rank compression258

and BitDelta. By contrast, our259

proposed delta-compression method260

(i.e., Delta-CoMe) consistently out-261

performs LoRA across all four bench-262

marks. Specifically, the performance of our method is close to that of the uncompressed aligned263

models (41.9 vs. 43.0), while the average score of LoRA is only 29.8. These results imply that264

learning an aligned model and then compressing it can achieve better results than delta-tuning.265

6 Analysis266

6.1 Analysis of Quantization Error267

To better understand the performance of various delta-compression methods, we estimate the quanti-268

zation error as defined in Eq. (4). It is important to note that the error we calculate differs from that269

of GPTQ. Specifically, we use the mean square error between the activations of the uncompressed270

aligned model and those of the combination of the backbone model and the compressed delta model.271

The error is estimated on the GSM8K test set using WIZARDMATH-7B-V1.0 as the aligned model272

and LLAMA-2-7B as the backbone model. Since different layers have varying impacts on the final273

output (Wu et al., 2023), we distinguish low-, medium-, and high-layers when estimating the average274

quantization error. Specifically, the first 11 layers are designated as low-layers, the 12th to 22nd275

layers as medium-layers, and the last 10 layers as high-layers. Moreover, as outliers play a critical276

role in model compression (Dettmers et al., 2023; Lin et al., 2023), we also calculate the average277

error on outlier parameters. For each delta matrix �W, we select the top 1% of columns with the278

largest absolute values as outliers. Table 7 presents the results. We find that the average error of279

our methods (i.e., "Single" and "Triple") is substantially lower than both the low-rank baseline and280

BitDelta. Furthermore, the error of "Triple" is consistently less than that of "Single," reaffirming the281

necessity of mixed-precision compression for delta weights.282

6.2 Case Study283

We also present a detailed case study in Figure 3. Three delta-compression methods are examined:284

BitDelta, single-precision compression, and triple-precision compression. The reference answer is285

"104 hours". We observe that BitDelta makes mistakes initially, while single-precision compression286

generates an incorrect intermediate result at the second reasoning step. In contrast, our mixed-287

precision delta-compression method calculates the correct final answer.288
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Inference Speed and Storage

• Using Triton achieving about 3x speed up than Pytorch

• Saves GPU memory significantly achieving loading 50x models on a single GPU



Delta-CoMe with Low-bit Backbone

• Besides the 16-bit backbone, the 4-bit 
backbone is also widely used.

• Delta-CoMe can also maintain 
performance with a 4-bit backbone.



Conclusion

• Delta-CoMe achieves 1-bit compression and near-lossless performance across various typical tasks, 
including math, code, chat, and multi-modal tasks.

• Delta-CoMe can save more than 10x GPU memory and our kernel has achieved 3x speedup than 
Pytorch which can be applied into multi-tenant settings.

• However, the kernel is trivial, Wei et al. (2024) and Guo et al. (2024) have implemented more advanced kernels. We 
can draw on their methods to achieve higher acceleration ratios. 


