Audiovisual demos

A Versatile Diffusion Transformer with Mixture of Noise Levels for Audiovisual Generation

Gwanghyun Kim^{1,†,*} Alonso Martinez^{*} Yu-Chuan Su^{*} Brendan Jou² Jose Lezama² Agrim Gupta² Lijun Yu² Lu Jiang^{*} Aren Jansen² Jacob Walker² Krishna Somandepalli^{2,†}

¹Seoul National University ²Google DeepMind

(*Work done while at Google. [†]Equal contribution.)

Motivation

• Recent years have witnessed a remarkable surge in the development and exploration of multimodal diffusion models. Prominent examples include text-to-image (T2I), text-to-video (T2V).

Imagen 3^[1]

"Photographic portrait of a real life dragon resting peacefully in a zoo, curled in a zoo, curled up next to its pet sheep. Cinematic movie still, high quality DSLR photo"

Veo^[2]

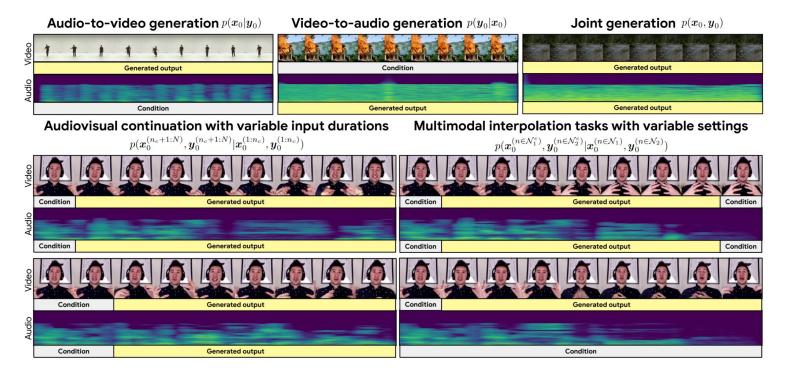
"A lone cowboy rides his horse across an open plain at beautiful sunset, soft light, warm colors"

Motivation

- Despite notable advancements, generating sequences across multiple modalities, like video and audio, remains challenging and is an open research area.
- Such capability would enable creating realistic, expressive, and controllable multimedia content, while also fostering cross-modal understanding of temporal signals.

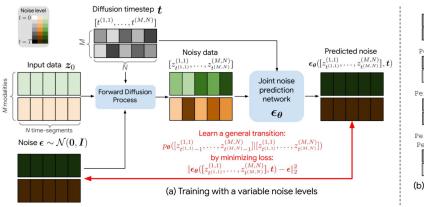
Motivation

- Training diffusion models for audiovisual sequences allows for a range of generation tasks by learning conditional distributions of various input-output combinations of the two modalities.
- Training separate models for each variation is expensive and impractical.

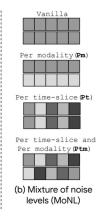


MoNL & AVDIT

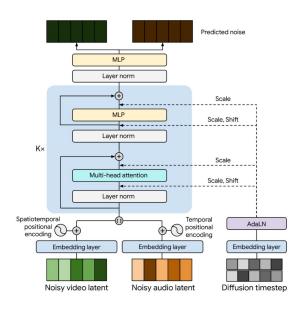
- In this work, we propose a novel Mixture of Noise Levels (MoNL) to effectively learn the arbitrary conditional distributions in the audiovisual space.
- We apply this approach for audiovisual generation by developing a latent-based audiovisual diffusion transformer (AVDiT).



Training with MoNL

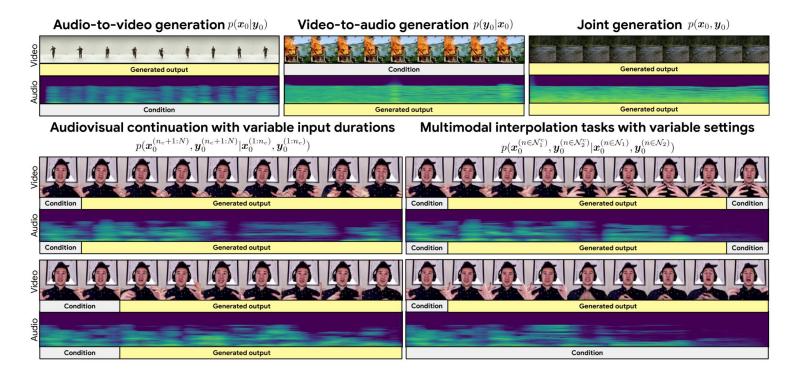


Schematic of AVDiT



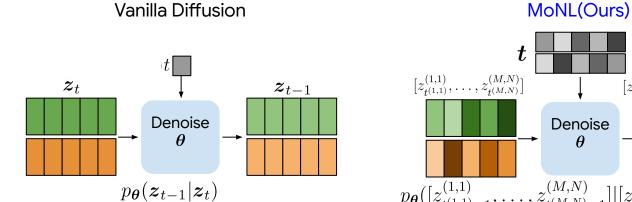
MoNL & AVDiT

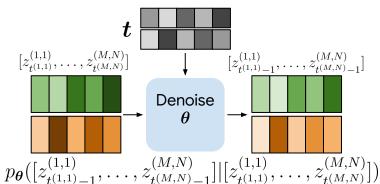
• Our method lets a single model handle diverse audio-video generation tasks, creating temporally consistent audio-video sequences and saving training time and resource.



Our goal is now to learn a general transition matrix between the various modalities and time-segments at each step:

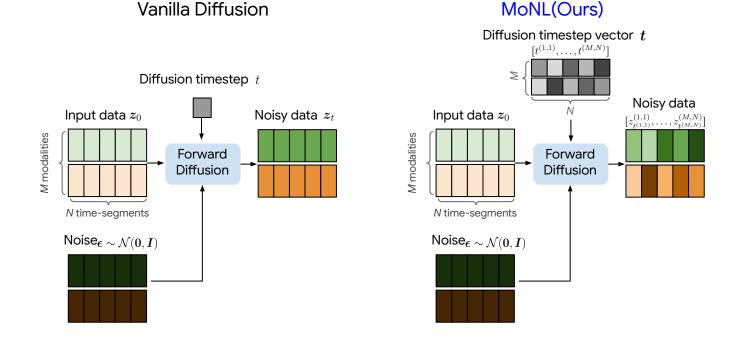
$$p_{\theta}([z_{t^{(1,1)}-1}^{(1,1)},\ldots,z_{t^{(M,N)}-1}^{(M,N)}]|[z_{t^{(1,1)}}^{(1,1)},\ldots,z_{t^{(M,N)}}^{(M,N)}])$$

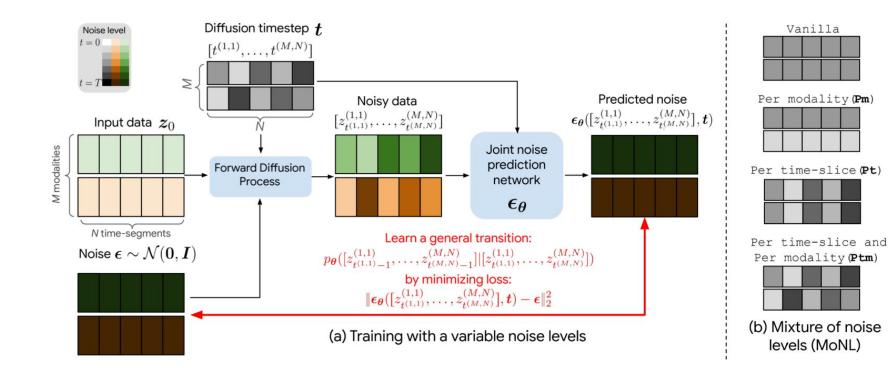


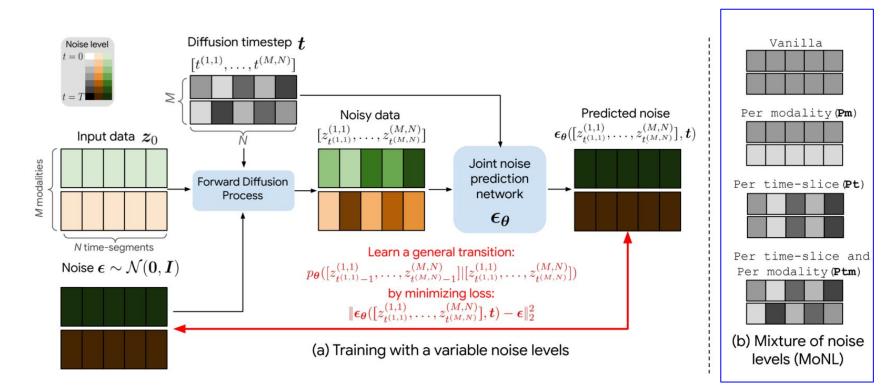


• During the forward diffusion, we can add variable level of noise to each element of input data as :

$$z_{t^{(m,n)}}^{(m,n)} = \sqrt{\overline{\alpha}_{t^{(m,n)}}} z_0^{(m,n)} + \sqrt{1 - \overline{\alpha}_{t^{(m,n)}}} \epsilon^{(m,n)}$$

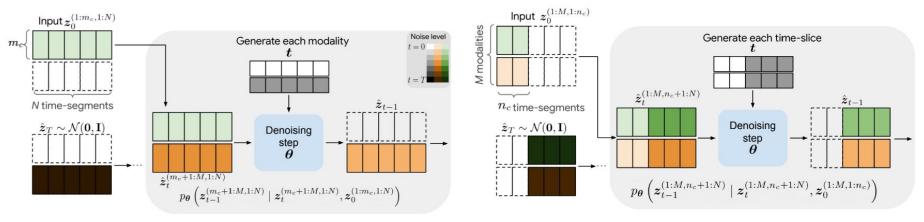






Mixture of Noise Levels (MoNL) - Conditional Inference

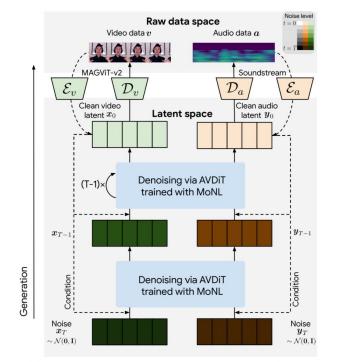
- We achieve arbitrary conditional distributions by selectively injecting inputs during inference based on the task specification
 - Clean inputs \rightarrow conditional portions with $t^{(m,n)} = 0$
 - Noisy inputs \rightarrow generating desired portions with the current diffusion step $t^{(m,n)} = t$



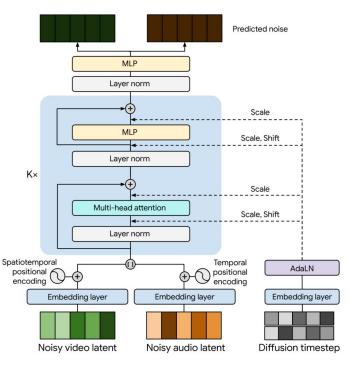
(a) Conditioning across modalities: cross-modal generation

(b) Conditioning across time-segments: multimodal interpolation

Audiovisual Latent Diffusion Transformer (AVDiT)

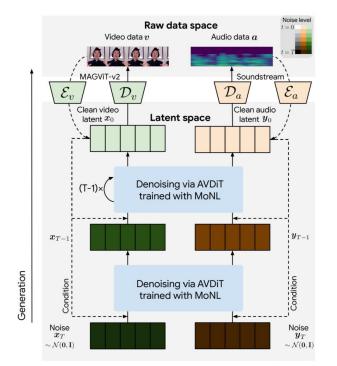


(a) Latent diffusion with mixture of noise levels (MoNL) and audiovisual diffusion transformer (AVDiT)



(b) Audio-video diffusion transformer (AVDiT)

Audiovisual Latent Diffusion Transformer (AVDiT)

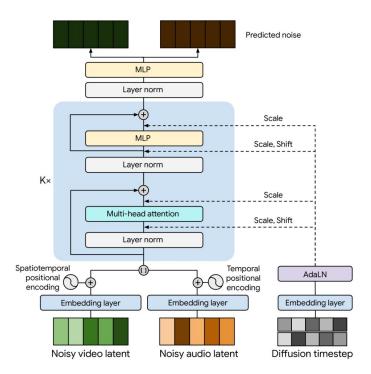


(a) Latent diffusion with mixture of noise levels (MoNL) and audiovisual diffusion transformer (AVDiT)

- We implement MoNL in the low-dimensional latent space learned by the MAGVIT-v2^[1] for video and the SoundStream^[2] for audio.
- Importantly, the temporal structure in these latent representations enables us to apply variable noise levels.

[1] Yu et al. "Language Model Beats Diffusion--Tokenizer is Key to Visual Generation." arXiv 2023
[2] Zeghidour et al. "Soundstream: An end-to-end neural audio codec." T-ASLP 2021

Audiovisual Latent Diffusion Transformer (AVDiT)



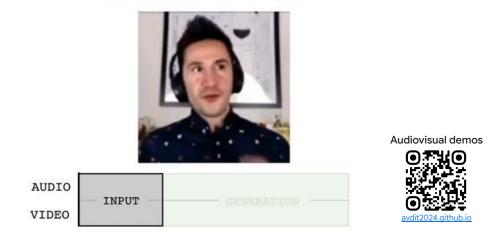
- We also introduce a transformer-based network for joint noise prediction.
- Transformers are a natural fit for multimodal generation as they can
 - efficiently integrate multiple modalities^[1] and their interactions,
 - capture intricate spatiotemporal dependencies^[2],
 - have shown impressive video generation^[3] capabilities.

(b) Audio-video diffusion transformer (AVDiT)

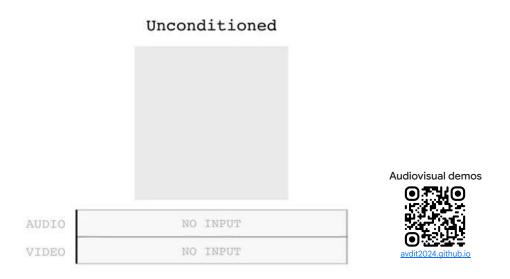
Georgescu, Mariana-Iuliana, et al. "Audiovisual masked autoencoders." *CVPR 2023* Zhou, Luowei, et al. "Unified vision-language pre-training for image captioning and vqa." *AAAI 2020* Gupta, Agrim, et al. "Photorealistic video generation with diffusion models." *arXiv* 2023

Demo of our Model Trained on Monologue Dataset

Audio Video Continuation



Demo of our Model Trained on Landscape



Demo of our Model Trained on AIST++

Audio Video Continuation

Effectiveness of MoNL - Quantitative Comparison

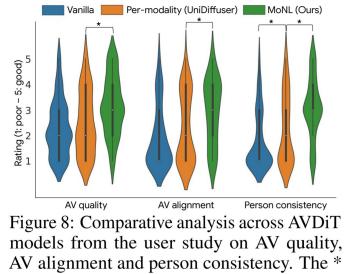
• On average across all tasks, AVDiT trained with MoNL outperforms all baselines, demonstrating its versatility to learn diverse conditional distributions.

Table 1: Comparison of AVDiT trained with mixture of noise levels (MoNL) on the Monologues dataset for unconditional joint generation (Joint), cross-modal (A2V, V2A) and multimodal interpolation (AV-inpaint, AV-continue) tasks. FAD = 2.7 and FVD = 3.3 for groundtruth autoencoder reconstructions of the inputs. Fréchet metrics estimated with N=25k.

Setting / Task	Joint		A2V	V2A AV-inpaint		paint	AV-continue		Average	
Setting / Task	FAD \downarrow	FVD ↓	FVD ↓	$ $ FAD \downarrow	FAD \downarrow	FVD ↓	FAD \downarrow	FVD ↓	FAD \downarrow	FVD ↓
Conditional (task-specific)	7.1	63.6	49.4	11.5	5.3	15.9	7.4	12.1	7.8	35.3
Per modality	7.0	84.4	34.1	4.7	6.2	213.6	4.5	92.1	5.6	106.1
Vanilla	7.1	63.6	53.3	8.1	8.1	226.8	6.1	140.8	7.4	121.1
MoNL (Ours)	6.4	77.6	40.2	5.3	4.6	11.8	3.1	8.8	4.9	34.6
	Ablations									
Per time-segment	6.6	96.3	124.5	12.1	5.1	28.2	5.0	72.3	7.2	80.3
Per time-segment Per modality	7.0	84.5	52.5	5.9	5.4	22.9	4.8	61.2	5.7	55.3
Pt/Pm/Ptm	9.0	90.1	43.1	5.1	5.2	13.4	4.1	16.9	5.9	40.9

Effectiveness of MoNL - User Study

- Pairwise Mann-Whitney U tests were conducted with Bonferroni correction for multiple comparisons to assess statistical difference.
- Across all axes (AV-quality, AV-alignment, Person consistency), raters preferred samples generated from MoNL over that of Vanilla or Per-modality (Pm) approaches.



Comparison with MM-Diffusion

- MM-Diffusion (MMD)^[1]
 - The sole published work with a released model that tackles both audio and video generation within a single model.
 - While a direct comparison between U-Nets and our transformer architecture is inherently challenging due to their distinct design principles, we show that MoNL AVDiT surpasses this strong U-Net baseline.
- On Landscape dataset

Figure 2: Comparing conditional inference for AV-continuation for MM-Diffusion (left) and Ours (right) on Landscape dataset. Our approach excels at generating temporally consistent sequences.

• On AIST++ dataset

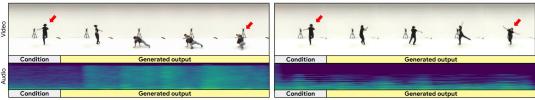


Figure 7: Unlike MM-Diffusion (left) where clothes and appearance is altered in the continuation (red arrow), our AVDiT with MoNL (right) maintains subject consistency in the AIST++ dataset.

Comparison with MM-Diffusion - Quantitative & User Study

- MoNL AVDIT outperformed MMD in terms of the FAD and FVD metrics across all tasks on the AIST++ and Landscape datasets.
- On the Landscape dataset, AV-align results demonstrate that our model achieves better alignment compared to MMD.
- Our MoNL AVDiT outperformed MMD in user studies overall.

Table 2: Quantitative comparison between our AVDiT with MoNLTable 3: User study of comparisonand MM-Diffusion (MMD).between our model and MM-Diffusion

-		AIST++			Landscape				(M
Task	Method	FAD \downarrow	$FVD\downarrow$	$\mathrm{KVD}\downarrow$	FAD↓	$FVD\downarrow$	$KVD\downarrow$	AV align ↑	
Recor	struction	0.90	11.72	0.96	0.76	16.41	-0.25	0.60	
A2V	MMD Ours	-	184.45 38.04	33.91 5.27		238.33 86.79	15.14 4.30	0.54 0.57	AV
V2A	MMD Ours	13.30 1.11	-	-	13.60 0.78	-	-	0.50 0.51	

between our model and MM-Diffusion (MMD) on the AIST++ dataset.

	Preference of ours over MMD					
	AV align	AV quality	Person consistency			
AV-continue	0.69	0.71	0.93			
A2V	0.77	0.61	0.75			
V2A	0.61	0.49	0.60			
Joint	0.74	0.72	0.81			

Conclusion

- We propose a unified approach for multimodal diffusion using a mixture of noise levels (MoNL) for generating and manipulating sequences across modalities and time.
- This empowers a single model to handle diverse tasks like audio-video continuation, interpolation, and cross-modal generation.
- We show that an audiovisual latent diffusion transformer (AVDiT) trained with MoNL achieves state-of-the-art performance in audiovisual-sequence generation, providing new opportunities for expressive and controllable multimedia content creation.

Future works

- Our measures on subject consistency and synchrony of gestures and vocal tone were qualitative. Quantitative metrics to capture these joint spaces are part of our future work.
- We are also working on super-resolution systems to address visual quality and text conditioning to further optimize speech quality.

Thank you.

Poster: Session 5, Dec. 13(Fri) 11:00 AM Audiovisual demos: avdit2024.github.io

Gwanghyun Kim* Seoul National University gwang.kim@snu.ac.kr

Lu Jiang*

Yu-Chuan Su*

Aren Jansen Google DeepMind

Brendan Jou Google DeepMind

Jacob Walker Google DeepMind

Jose Lezama Google DeepMind

Agrim Gupta Google DeepMind

Krishna Somandepalli§ Google DeepMind ksoman@google.com

Equal contribution *Work done while at Google. §Corresponding author