How do Large Language Models Handle Multilingualism?

Yiran Zhao^{1,2†} Wenxuan Zhang^{2,3‡} Guizhen Chen^{2,4§} Kenji Kawaguchi¹ Lidong Bing^{2,3} ¹ National University of Singapore ² DAMO Academy, Alibaba Group, Singapore ³ Hupan Lab, 310023, Hangzhou, China ⁴ Nanyang Technological University, Singapore zhaoyiran@u.nus.edu kenji@comp.nus.edu.sg {saike.zwx, guizhen.chen, l.bing}@alibaba-inc.com

How do LLMs handle multilingualism?

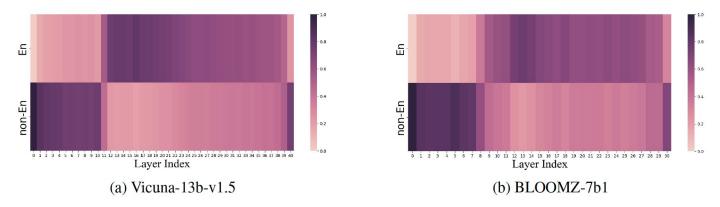
- Existing LLMs exhibit certain multilingual abilities (at least for some languages)
- But a fundamental question: *how do LLMs handle multilingualism?*
- □ We won't be able to (efficiently) enhance the multilingual ability without having answers (or even certain clues) to this question

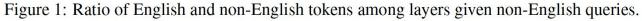
How do LLMs handle multilingualism?

- Existing LLMs exhibit certain multilingual abilities (at least for some languages)
- But a fundamental question: *how do LLMs handle multilingualism?*
- We won't be able to (efficiently) enhance the multilingual ability without having answers (or even certain clues) to this question

What do we know for now

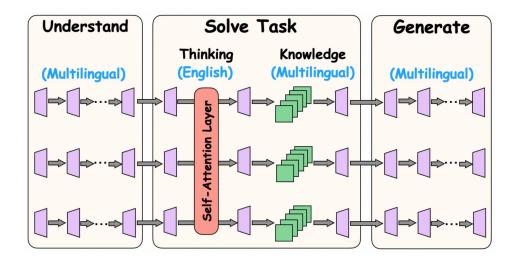
- (Traditional) multilingual research: mainly works on understanding the cross-lingual transfer ability
 - Let train on English labeled data, perform tasks in other languages
- □ More recent explainability-style studies
 - □ We show that feed-forward layers emulate neural memories, where the first parameter matrix in the layer corresponds to keys, and the second parameter matrix to values. [1]
 - □ ... indicate that LMs process the input by transmitting the information relevant to the query from mid-sequence early layers to the final token using the attention mechanism [2]


Mor Geva, Roei Schuster, Jonathan Berant, Omer Levy. Transformer Feed-Forward Layers Are Key-Value Memories. EMNLP 2021
Alessandro Stolfo, Yonatan Belinkov, Mrinmaya Sachan. A Mechanistic Interpretation of Arithmetic Reasoning in Language Models using Causal Mediation Analysis. EMNLP 2023


Investigating the embeddings first

- To gain an initial understanding, we analyze the decoded embeddings after each layer when processing inputs in various **non-English languages**.
- U We then classify these embeddings as corresponding to either English or non-English tokens

Investigating the embeddings first


- To gain an initial understanding, we analyze the decoded embeddings after each layer when processing inputs in various **non-English languages**.
- U We then classify these embeddings as corresponding to either English or non-English tokens

Non-English => English => Non-English

Put all together: A new framework

- In the first several layers, LLMs understand the user input and convert the diverse linguistic features into a unified representation.
- Transitioning to the **task-solving** phase, LLMs solve the tasks by thinking in English and incorporating multilingual knowledge, leveraging the self-attention and feed-forward structures respectively.
- Finally, models **generate** responses that align with the original language of the query.

Detect language-specific neuron

input. We denote the input of *i*-th layer in Transformer (Vaswani et al., 2017) as h_i , with the corresponding output represented as $h_{i+1} = T_i(h_i)$, where T_i represents the parameters of the *i*-th layer. For a specific neuron, denoted as $N_{i+1}^{(i)}$, within the *i*-th layer—whether located in the attention or feed-forward layer—the importance is quantified as the difference between output when $N_k^{(i)}$ is either activated or deactivated. Formally, it is defined as

 $\text{Imp}(N_k^{(i)}|h_i) = ||T_i \setminus N_k^{(i)}(h_i) - T_i(h_i)||_2,$ (1)

where $T_i \backslash N_k(\cdot)$ denotes deactivating $N_k^{(i)}$ in T_i . Then, with a set of the corpus in the specific language, denoted as $C = \{c_1, \cdots, c_i, \cdots, c_i\}$, we can calculate the importance of each neuron in each layer to each corpus. Furthermore, we can select neurons that are important to all corpus in C, i.e.,

 $\operatorname{Imp}(N_k^{(i)}|c_l) \ge \epsilon, \ \forall c_l \in C,$ (2)

where ϵ is the pre-defined threshold. However, it is super time-consuming to traverse all neurons and all inputs sequentially. Therefore, we need to design a parallel algorithm for acceleration.

2.2 Parallel Neuron Detection Feed-Forward Layer In Llama2 (Touvron et al., 2023), the FFN(x) is defined as

 $(SiLU(W_{gate}(x)) \cdot W_{up}(x))W_{down},$ (3) where $x \in \mathbb{R}^{l \times d_{model}}, W_{aabe} \in \mathbb{R}^{d_{model} \times d_{inter}},$

where $\mathbb{R}^{d_{inter} \times d_{model}}$, we denote hidden embedding before W_{down} as h_{fin} . When deactivating the k-th neuron of W_{up} ,

$$\begin{split} & \operatorname{Imp}(W_{up}[:,k]|x) = \|\widehat{\operatorname{FR}}(x) - \operatorname{FFN}(x)\|_2 \\ & = \left\| \left(h_{\mathrm{ffn}} \cdot \operatorname{Mask}[k] \right) W_{down}(x) \right\|_2, \end{split} \tag{4}$$

where Mask[k] is a vector of length d_{inter} with the k-th element as 1 and others as 0. For calculating Imp($W_{up}[:,k]|x$) for all neurons in W_{up} parallelly, we introduce a diagonal mask matrix of size (d_{inter}, d_{inter}), denoted as Mask. Therefore,

 $Imp(W_{up}|x) = ||(h_{ffn} \cdot Mask)W_{down}(x)||_2.$ (5)

Furthermore, we find that deactivating the k-th neuron of W_{down} is equivalent to deactivating the k-th neuron in W_{up} as they all set $h_{\rm Hin}[k]=0$. Therefore ${\rm Imp}(W_{down}|x)$ can be obtain by Equation (5).

Self-Attention Layer For the input x of length l, the self-attention layer is defined as

Softmax $\left(\frac{W_Q(x)W_K^T(x)}{\sqrt{d}}\right)W_V(x),$ (6)

where $W_Q \in \mathbb{R}^{d_{maxl} \times d_{maxl}} M_{K} \in \mathbb{R}^{d_{maxl} \times d_{maxl} \times d_{maxl}} M_V \in \mathbb{R}^{d_{maxl} \times d_{maxl} \times d_{Maxl}} A \otimes W_V(x)$ is a linear layer, Imp($W_V|_Z$) can be obtained following Equation (5). In the case of W_Q , when deactivating the k-th neuron, $W_Q - W_Q|_{C^1, K}|_Z$ o, we aim to obtain Imp($W_Q|_{C^1, K}|_Z)$. Firstly, we calculate the difference in attention weight, i.e., $W_Q(x)W_Z^2(x)$.

 $\Delta_k = \hat{W}_Q(x)W_K^T(x) - W_Q(x)W_K^T(x)$ = $W_Q(x)[:, k]W_K(x)[k, :] \in \mathbb{R}^{l \times l}$ (7)

Then, the importance of $W_Q[:, k]$ can be defined as

$$\begin{split} & \operatorname{Imp}(W_Q[k, :]|x) \\ &\approx \|\operatorname{attention}(x) - \operatorname{attention}(x)\|_2 \\ &\approx \|\operatorname{softmax}(\frac{W_Q(x)W_K^T(x) - \Delta_k}{\sqrt{d}}) - (8) \\ &\operatorname{softmax}(\frac{W_Q(x)W_K^T(x)}{\sqrt{d}}) \|_2 \end{split}$$

This process can also be calculated parallelly, i.e.,

$$\begin{split} \Delta &= \hat{W}_Q(x) W_K^T(x) - W_Q(x) W_K^T(x) \\ &= W_Q(x).resize(l, 1, d_{mid}) \times \\ &W_K(x).resize(1, l, d_{mid}) \in \mathbb{R}^{l \times l \times d_{mid}} \end{split} \tag{9}$$

Then, the importance of W_Q can be defined as

$$\begin{split} & \mathsf{np}(W_Q|x) \approx \left\| \operatorname{softmax} \left(\frac{W_Q(x) W_K^T(x) - \Delta}{\sqrt{d}} \right) - \right. \\ & \left. \operatorname{softmax} \left(\frac{W_Q(x) W_K^T(x)}{\sqrt{d}} \right) \right\|_2. \end{split}$$

 $Imp(W_K|x)$ can be calculated the same way.

3 Investigate Language-Specific Neurons

In this section, we apply the PLND method to selected languages and models in order to confirm the existence of language-specific neurons and investigate the relationships between languages.

 $\overline{ \ }^2$ In Vicuna and Mistral, $d_{model} = d_{mid}$, but we use different notations to avoid ambiguity.

How to validate such a framework: deactivate relevant neurons
We propose a method to detect language-specific neuron with pure free text (aka unlabeled data) of certain languages

	Method	Fr	Zh	Es	Ru	Avg.
Vicuna	Original	14.2	61.1	10.4	20.8	26.6
	Deact-Rand.	14.1	61.6	10.4	20.8	26.7
	Deact-Lang.	0.83	0.00	0.24	0.42	0.37
Mistral	Original	15.2	56.4	10.6	21.0	25.8
	Deact-Rand.	15.4	55.9	10.2	21.2	25.7
	Deact-Lang.	0.21	0.39	0.15	0.07	0.21

□ Just deactivating around **0.13%** neurons, LLMs almost lose multilingual capabilities (26.6 => 0.37)

Verify the framework

Approach: deactivate certain language-specific neurons of certain structures and observe the performance gap for English and Non-English tasks

- comparisons: language-specific neurons v.s. random neurons
- metrics:
 - The gap between the original performance and performance after deactivation for English (ΔEng) and averaged non-English languages (Δn-Eng)
 - A single metric $\Delta = \Delta \text{Eng} \Delta n$ -Eng, where a high value indicates such deactivation operation does not bring much impact to the English performance but lead to performance drop in non-English.

Verify the framework - Understanding

-					-	8		•			
Model		Deacti	vating N	/letho	d	Performance					
widdei	Under	S-ATTN	S-FFN	Gen	Neuron	Eng	n-Eng	$\Delta_{ ext{Eng}}$	$\Delta_{ ext{n-Eng}}$	$\Delta \uparrow$	
	1	×	×	×	Random	57.8	53.9	+0.3	-0.1	+0.4	
Vienne	1	\checkmark	1	1	Random	57.9	54.2	+0.4	+0.3	+0.1	
Vicuna	1	×	×	×	Lang-Spec	56.5	46.0	-0.5	-7.9	+7.4	
	×	1	1	×	Lang-Spec	40.9	38.6	-15.9	-15.3	-0.6	
	×	×	×	1	Lang-Spec	57.9	52.8	-0.4	-1.1	+0.7	
	1	×	×	×	Random	58.1	55.5	+1.0	-0.2	+1.2	
	1	1	1	1	Random	57.6	55.5	+0.5	-0.2	+0.7	
Mistral	1	×	×	X	Lang-Spec	56.2	48.3	-0.9	-7.4	+6.5	
	×	1	1	X	Lang-Spec	53.2	47.0	-3.9	-8.7	+4.8	
	×	×	×	1	Lang-Spec	56.4	54.6	-0.7	-1.0	+0.3	

randomly deactivating neurons (wherever they are) => almost unaffected

(i) neurons randomly selected from the understanding layers

- (ii) neurons randomly chosen across all layers
- (iii) language-specific neurons within the understanding layers
- (iv) language-specific neurons in the task-solving layers
- (v) language-specific neurons in the generation layers.

Verify the framework - Understanding

Model		Deacti	vating N	Ietho	d		Pe	erforma	nce		-
wiouei	Under	S-ATTN	S-FFN	Gen	Neuron	Eng	n-Eng	$\Delta_{ ext{Eng}}$	$\Delta_{ ext{n-Eng}}$	Δ \uparrow	_
	1	×	×	x	Random	57.8	53.9	+0.3	-0.1	+0.4	
Vicuna	1	1	1	1	Random	57.9	54.2	+0.4	+0.3	+0.1	all performance drop
	1	×	×	×	Lang-Spec	56.5	46.0	-0.5	-7.9	+7.4	
	×	1	1	X	Lang-Spec	40.9	38.6	-15.9	-15.3	-0.6	
	×	×	×	1	Lang-Spec	57.9	52.8	-0.4	-1.1	+0.7	
	1	×	×	X	Random	58.1	55.5	+1.0	-0.2	+1.2	almost unaffected
	1	1	1	1	Random	57.6	55.5	+0.5	-0.2	+0.7	
Mistral	1	×	×	×	Lang-Spec	56.2	48.3	-0.9	-7.4	+6.5	
	×	1	1	X	Lang-Spec	53.2	47.0	-3.9	-8.7	+4.8	
	×	×	×	1	Lang-Spec	56.4	54.6	-0.7	-1.0	+0.3	

(i) neurons randomly selected from the understanding layers

- (ii) neurons randomly chosen across all layers
- (iii) language-specific neurons within the understanding layers
- (iv) language-specific neurons in the task-solving layers
- (v) language-specific neurons in the generation layers.

Verify the framework - Understanding

Madal		Deacti	vating N	Ietho	d	Performance				
Model	Under	S-ATTN	S-FFN	Gen	Neuron	Eng	n-Eng	$\Delta_{ ext{Eng}}$	$\Delta_{\text{n-Eng}}$	Δ \uparrow
Vicuna	1	×	×	X	Random	57.8	53.9	+0.3	-0.1	+0.4
	1	1	1	1	Random	57.9	54.2	+0.4	+0.3	+0.1
	1	×	×	X	Lang-Spec	56.5	46.0	-0.5	-7.9	+7.4
	×	1	1	×	Lang-Spec	40.9	38.6	-15.9	-15.3	-0.6
	×	×	×	1	Lang-Spec	57.9	52.8	-0.4	-1.1	+0.7
	1	×	×	X	Random	58.1	55.5	+1.0	-0.2	+1.2
	1	✓	1	1	Random	57.6	55.5	+0.5	-0.2	+0.7
Mistral	1	×	×	×	Lang-Spec	56.2	48.3	-0.9	-7.4	+6.5
	×	1	1	×	Lang-Spec	53.2	47.0	-3.9	-8.7	+4.8
	×	×	×	1	Lang-Spec	56.4	54.6	-0.7	-1.0	+0.3

English unaffected, but target languages are greatly impacted

prove our 1st hypothesis

(i) neurons randomly selected from the understanding layers

- (ii) neurons randomly chosen across all layers
- (iii) language-specific neurons within the understanding layers
- (iv) language-specific neurons in the task-solving layers
- (v) language-specific neurons in the generation layers.

Verify the framework - Reasoning

Madal		Deacti	vating N	Ietho	d	Performance					
Model	Under	S-ATTN	S-FFN	Gen	Neuron	Eng	n-Eng	$\Delta_{ ext{Eng}}$	$\Delta_{\text{n-Eng}}$	Δ \uparrow	
	×	1	×	×	Random	20.0	11.3	-0.4	-1.8	+1.4	
	×	1	1	X	Random	18.4	12.2	-2.0	-1.0	-1.0	
Vicuna	~	1	1	~	Random	19.6	12.5	-0.8	-0.7	-0.1	
	×	1	1	×	Lang-Spec	7.2	3.4	-13.2	-9.8	-3.4	
	1	×	×	1	Lang-Spec	18.1	8.3	-2.3	-4.9	+2.6	
	1	×	1	1	Lang-Spec	19.0	7.8	-1.4	-5.4	+4.0	
	×	1	X	X	Random	40.8	23.4	-5.2	-2.9	-2.3	
	×	1	1	×	Random	39.2	24.0	-6.8	-2.3	-4.5	
Mistral	1	1	1	1	Random	45.2	26.8	-0.8	+0.5	-1.3	
	×	1	1	X	Lang-Spec	38.2	18.4	-7.8	-7.9	+0.1	
	1	×	×	1	Lang-Spec	44.0	18.1	-2.0	-8.2	+6.2	
	1	×	1	1	Lang-Spec	46.2	18.3	+0.2	-8.0	+8.2	

randomly deactivating neurons in task-specific layer matters most

Verify the framework - Reasoning

Madal		Deacti	vating N	Ietho	d	Performance					
Model	Under	S-ATTN	S-FFN	Gen	Neuron	Eng	n-Eng	$\Delta_{ ext{Eng}}$	$\Delta_{\text{n-Eng}}$	Δ \uparrow	
	×	1	×	X	Random	20.0	11.3	-0.4	-1.8	+1.4	
	×	✓	1	×	Random	18.4	12.2	-2.0	-1.0	-1.0	
Vicuna	1	✓	1	1	Random	19.6	12.5	-0.8	-0.7	-0.1	
	×	✓	1	×	Lang-Spec	7.2	3.4	-13.2	-9.8	-3.4	
	1	×	×	1	Lang-Spec	18.1	8.3	-2.3	-4.9	+2.6	
	1	×	1	1	Lang-Spec	19.0	7.8	-1.4	-5.4	+4.0	
	×	1	×	×	Random	40.8	23.4	-5.2	-2.9	-2.3	
	×	1	1	×	Random	39.2	24.0	-6.8	-2.3	-4.5	
Mistral	1	1	1	1	Random	45.2	26.8	-0.8	+0.5	-1.3	
	×	1	1	X	Lang-Spec	38.2	18.4	-7.8	-7.9	+0.1	
	1	×	×	1	Lang-Spec	44.0	18.1	-2.0	-8.2	+6.2	
	1	×	1	1	Lang-Spec	46.2	18.3	+0.2	-8.0	+8.2	

English is also destroyed if deactivating both attention and FFN layers

But it can be preserved if we only deactivate the FFN layers

Verify the framework - Multilingual Knowledge

Model		Deacti	vating N	Ietho	d	Performance					
Model	Under	S-ATTN	S-FFN	Gen	Neuron	Eng	n-Eng	$\Delta_{ ext{Eng}}$	$\Delta_{\text{n-Eng}}$	Δ \uparrow	
	×	×	1	×	Random	57.5	39.5	-0.3	+0.0	-0.3	
	×	1	1	×	Random	56.0	38.7	-1.8	-0.8	-1.0	
Vicuna	1	✓	1	1	Random	57.7	39.6	-0.1	+0.1	-0.2	
	×	✓	×	X	Lang-Spec	33.7	30.3	-24.1	-9.2	-14.9	
	×	×	1	×	Lang-Spec	57.5	37.5	-0.3	-2.0	+1.7	
	X	×	1	X	Random	61.0	37.0	-0.3	-0.5	+0.2	
	×	1	1	×	Random	60.7	36.3	-0.6	-1.2	+0.6	
Mistral	1	1	1	1	Random	61.8	37.4	+0.1	-0.1	+0.2	
	×	1	×	X	Lang-Spec	51.2	28.9	-10.1	-8.6	-1.5	
	×	×	1	×	Lang-Spec	61.2	35.1	-0.1	-2.4	+2.3	

Table 6: Results of the knowledge question answering. The highest performance reduction difference (Δ) is achieved by disabling all language-specific neurons in the feed-forward structure within the task-solving layer.

Verify the framework - Generation

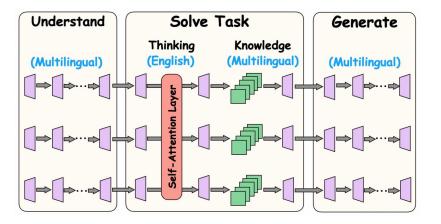
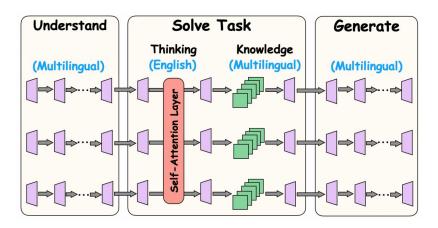

Model		Deacti	vating N	Aetho	d	Performance				
wiodei	Under	S-ATTN	S-FFN	Gen	Neuron	Eng	n-Eng	$\Delta_{ ext{Eng}}$	$\Delta_{ ext{n-Eng}}$	Δ \uparrow
	×	×	×	1	Random	13.2	26.8	+0.1	+0.1	+0.0
Vicuna	1	1	1	1	Random	13.0	26.7	-0.1	+0.0	-0.1
	×	×	×	1	Lang-Spec	13.1	25.7	+0.0	-1.1	+1.1
	×	×	×	1	Random	13.6	25.9	+0.1	+0.1	+0.0
Mistral	1	1	1	1	Random	13.6	25.7	+0.1	-0.2	+0.3
	×	×	×	1	Lang-Spec	13.8	24.3	+0.3	-1.5	+1.8

Table 7: Results of the generation task following neuron deactivation. The highest performance reduction difference (Δ) is achieved by disabling all language-specific neurons in the generation layer.

How can we utilize such a framework: Enhancement!

We have (basically) verified the proposed framework via deactivating certain neurons.


□ We can also enhance their multilingual ability

How can we utilize such a framework: Enhancement!

We have (basically) verified the proposed framework via deactivating certain neurons.

- U We can also enhance their multilingual ability
- Mainly focus on the understanding and generation ability first, since extending the reasoning abilities or broadening the knowledge base may require more specific data preparation
- Approach: tune language-specific neuron with only <1k documents!

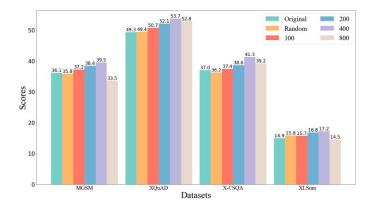


Figure 4: Enhancement results on high-resource languages, while the number is average among languages.