

RankUp: Boosting Semi-Supervised Regression with an Auxiliary Ranking Classifier

Pin-Yen Huang Academia Sinica

Szu-Wei Fu NVIDIA

Yu Tsao Academia Sinica

[NeurIPS 2024]

Labeled Data is Costly and Time-Consuming to Acquire

- 1. **Wedical Data**: Requires experts, such as doctors, to label data.
- 2. **Earge-scale Datasets**: Even simple labeling tasks become costly with millions of data points.
- 3. ... (Many More)

Labeled Data is Costly and Time-Consuming to Acquire

- 1. **Wedical Data**: Requires experts, such as doctors, to label data.
- 2. **Earge-scale Datasets**: Even simple labeling tasks become costly with millions of data points.
- 3. ... (Many More)

📉 Reducing Labeling Costs: Semi-Supervised Learning (SSL)

- Reduces reliance for labeled data by leveraging unlabeled data during training.
- Unlabeled data is usually easier and less costly to obtain than labeled data.

Background: FixMatch-Based SSL Methods

• Image Source: Sohn, Kihyuk, et al. "Fixmatch: Simplifying semi-supervised learning with consistency and confidence." Advances in neural information processing systems 33 (2020): 596-608.

Background: FixMatch-Based SSL Methods

• Image Source: Sohn, Kihyuk, et al. "Fixmatch: Simplifying semi-supervised learning with consistency and confidence." Advances in neural information processing systems 33 (2020): 596-608.

1 Challenges for Regression Tasks

• Regression models lack **confidence measurement**, making FixMatch's **confidence thresholding** and **pseudo-labeling** unfeasible.

Proposed Method: RankUp

Auxiliary Ranking Classifier (ARC)

• ARC integrates with existing regression models to predict the **relative ranking** of data pairs (e.g., which data point has a higher regression value).

Proposed Method: RankUp

Integrating Semi-Supervised Classification Methods

• Existing semi-supervised classification methods can be used to train ARC.

Proposed Method: RDA

Regression Distribution Alignment (RDA)

 RDA improves the quality of regression pseudo-labels by aligning the distribution of pseudo-labels with the distribution of the labeled data.

Main Experiments Results

	UTKFace (Image Age Estimation)					
	Labels = 50			Labels = 250		
	MAE↓	$R^2\uparrow$	SRCC↑	MAE↓	$R^2\uparrow$	SRCC↑
Supervised	$14.13{\scriptstyle \pm 0.56}$	$0.090{\scriptstyle \pm 0.092}$	$0.371{\scriptstyle \pm 0.071}$	$9.42{\scriptstyle \pm 0.16}$	$0.540{\scriptstyle \pm 0.014}$	$0.712{\scriptstyle \pm 0.010}$
Π -Model	$13.82{\scriptstyle \pm 1.02}$	$0.100{\scriptstyle \pm 0.086}$	$0.387{\scriptstyle \pm 0.092}$	$9.45{\scriptstyle \pm 0.30}$	$0.534{\scriptstyle \pm 0.030}$	$0.706{\scriptstyle \pm 0.015}$
Mean Teacher	$13.92{\scriptstyle \pm 0.20}$	$0.127{\scriptstyle \pm 0.037}$	$0.423{\scriptstyle \pm 0.023}$	$8.85{\scriptstyle \pm 0.25}$	$0.586{\scriptstyle \pm 0.020}$	$0.745{\scriptstyle \pm 0.013}$
CLSS	$13.61{\scriptstyle \pm 0.92}$	$0.138{\scriptstyle \pm 0.101}$	$0.447{\scriptstyle\pm0.074}$	$9.10{\scriptstyle \pm 0.15}$	$0.586{\scriptstyle \pm 0.016}$	$0.737{\scriptstyle \pm 0.014}$
UCVME	$13.49{\scriptstyle \pm 0.95}$	$0.157{\scriptstyle \pm 0.110}$	$0.412{\scriptstyle \pm 0.127}$	$8.63{\scriptstyle \pm 0.17}$	$0.626{\scriptstyle \pm 0.006}$	$0.767{\scriptstyle\pm0.007}$
MixMatch	$11.44{\scriptstyle \pm 0.45}$	$0.401{\scriptstyle \pm 0.028}$	$0.674{\scriptstyle \pm 0.035}$	$7.95{\scriptstyle \pm 0.15}$	$0.692{\scriptstyle \pm 0.013}$	$0.832{\scriptstyle \pm 0.008}$
RankUp (Ours)	$9.96{\scriptstyle \pm 0.62}$	$0.514{\scriptstyle \pm 0.043}$	$0.703{\scriptstyle \pm 0.019}$	$7.06{\scriptstyle \pm 0.11}$	$0.751{\scriptstyle \pm 0.011}$	$0.835{\scriptstyle \pm 0.008}$
RankUp + RDA (Ours)	$\textbf{9.33}{\scriptstyle \pm 0.54}$	$0.552{\scriptstyle \pm 0.041}$	0.770 ±0.009	$\boldsymbol{6.57}{\scriptstyle \pm 0.18}$	$0.782{\scriptstyle \pm 0.012}$	$0.856{\scriptstyle \pm 0.005}$
Fully-Supervised	$4.85{\scriptstyle \pm 0.01}$	$0.875{\scriptstyle\pm0.000}$	$0.910{\scriptstyle \pm 0.001}$	$4.85{\scriptstyle \pm 0.01}$	$0.875{\scriptstyle \pm 0.000}$	$0.910{\scriptstyle \pm 0.001}$

Table: Comparison of RankUp against other methods on the UTKFace dataset.

Feature Representations

Figure: t-SNE visualizations of feature representations from different semi-supervised regression methods.

Thank you!

If you're interested in this work, feel free to explore the following resources:

Paper

https://arxiv.org/abs/2410.22124

Code Repository

https://github.com/pm25/semisupervised-regression